944 resultados para Ålands landsting
Resumo:
Despite the increasing prevalence of salinity world-wide, the measurement of exchangeable cation concentrations in saline soils remains problematic. Two soil types (Mollisol and Vertisol) were equilibrated with a range of sodium adsorption ratio (SAR) solutions at various ionic strengths. The concentrations of exchangeable cations were then determined using several different types of methods, and the measured exchangeable cation concentrations compared to reference values. At low ionic strength (low salinity), the concentration of exchangeable cations can be accurately estimated from the total soil extractable cations. In saline soils, however, the presence of soluble salts in the soil solution precludes the use of this method. Leaching of the soil with a pre-wash solution (such as alcohol) was found to effectively remove the soluble salts from the soil, thus allowing the accurate measurement of the effective cation exchange capacity (ECEC). However, the dilution associated with this pre-washing increased the exchangeable Ca concentrations while simultaneously decreasing exchangeable Na. In contrast, when calculated as the difference between the total extractable cations and the soil solution cations, good correlations were found between the calculated exchangeable cation concentrations and the reference values for both Na (Mollisol: y=0.873x and Vertisol: y=0.960x) and Ca (Mollisol: y=0.901x and Vertisol: y=1.05x). Therefore, for soils with a soil solution ionic strength greater than 50 mM (electrical conductivity of 4 dS/m) (in which exchangeable cation concentrations are overestimated by the assumption they can be estimated as the total extractable cations), concentrations can be calculated as the difference between total extractable cations and soluble cations.
Resumo:
Accurate determination of the rhizotoxicity of Cu in dilute nutrient solutions is hindered by the difficulty of maintaining constant, pre-determined concentrations of Cu (micromolar) in solution. The critical Cu2+ activity associated with a reduction in the growth of solution-grown cowpea (Vigna unguiculata (L.) Walp. cv Caloona) was determined in a system in which Cu was maintained constant through the use of a cation exchange resin. The growth of roots and shoots was found to be reduced at solution Cu2+ activities ≥ 1.7 µM (corresponding to 90 % maximum growth). Although root growth was most likely reduced due to a direct Cu2+ toxicity, it is considered that the shoot growth reduction is attributable to a decrease in tissue concentrations of K, Ca, Mg, and Fe and the formation of interveinal chlorosis. At high Cu2+ activities, roots were brown in color, short and thick, had bent root tips with cracking of the epidermis and outer cortex, and had local swellings behind the roots tips due to a reduction in cell elongation. Root hair growth was reduced at concentrations lower than that which caused a significant reduction in overall root fresh weight.
Resumo:
The relationship between sodium adsorption ratio (SAR) and exchangeable sodium percentage (ESP) for all soils has traditionally been assumed to be similar to that developed by the United States Salinity Laboratory (USSL) in 1954. However, under certain conditions, this relationship has been shown not to be constant, but to vary with both ionic strength and clay mineralogy. We conducted a detailed experiment to determine the effect of ionic strength on the Na+-Ca2+ exchange of four clay minerals (kaolinite, illite, pyrophyllite, and montmorillonite), with results related to the diffuse double-layer (DDL) model. Clays in which external exchange sites dominated (kaolinite and pyrophyllite) tended to show an overall preference for Na+, with the magnitude of this preference increasing with decreasing ESP. For these external surfaces, increases in ionic strength were found to increase preference for Na+. Although illite (2:1 non-expanding mineral) was expected to be dominated by external surfaces, this clay displayed an overall preference for Ca2+, possibly indicating the opening of quasicrystals and the formation of internal exchange surfaces. For the expanding 2:1 clay, montmorillonite, Na+-Ca2+ exchange varied due to the formation of quasicrystals (and internal exchange surfaces) from individual clay platelets. At small ionic strength and large ESP, the clay platelets dispersed and were dominated by external exchange surfaces (displaying preference for Na+). However, as ionic strength increased and ESP decreased, quasicrystals (and internal exchange surfaces) formed, and preference for Ca2+ increased. Therefore, the relationship between SAR and ESP is not constant and should be determined directly for the soil of interest.
Resumo:
Soil erosion is a major environmental issue in Australia. It reduces land productivity and has off-site effects of decreased water quality. Broad-scale spatially distributed soil erosion estimation is essential for prioritising erosion control programs and as a component of broader assessments of natural resource condition. This paper describes spatial modelling methods and results that predict sheetwash and rill erosion over the Australian continent using the revised universal soil loss equation (RUSLE) and spatial data layers for each of the contributing environmental factors. The RUSLE has been used before in this way but here we advance the quality of estimation. We use time series of remote sensing imagery and daily rainfall to incorporate the effects of seasonally varying cover and rainfall intensity, and use new digital maps of soil and terrain properties. The results are compared with a compilation of Australian erosion plot data, revealing an acceptable consistency between predictions and observations. The modelling results show that: (1) the northern part of Australia has greater erosion potential than the south; (2) erosion potential differs significantly between summer and winter; (3) the average erosion rate is 4.1 t/ha. year over the continent and about 2.9 x 10(9) tonnes of soil is moved annually which represents 3.9% of global soil erosion from 5% of world land area; and (4) the erosion rate has increased from 4 to 33 times on average for agricultural lands compared with most natural vegetated lands.