989 resultados para zero(th)-order gap
Resumo:
This article outlines the initial draft of a PhD project which investigates refurbishment or rehabilitation projects in two German cities. The study focuses on obstacles, restraints and deficits as well as factors of success, which can be identified during the execution of the refurbishments. Moreover the study examines the process of the refurbishment itself, the general conditions under which the refurbishments are being executed as well as the implementation of sustainability criteria. First the article gives a short summary of the theoretical considerations of the study. In this respect it shortly outlines the global conditions of urban development and conducting challenges for cities in the 21st century, guiding principles of a sustainable urban development as well as goals of sustainable refurbishments. Finally the article shortly describes the case studies and presents the initial results of the empirical work.
Resumo:
The paper will present the central discourse of the knowledge-based society. Already in the 1960s the debate of the industrial society already raised the question whether there can be considered a paradigm shift towards a knowledge-based society. Some prominent authors already foreseen ‘knowledge’ as the main indicator in order to displace ‘labour’ and ‘capital’ as the main driving forces of the capitalistic development. Today on the political level and also in many scientific disciplines the assumption that we are already living in a knowledge-based society seems obvious. Although we still do not have a theory of the knowledge-based society and there still exist a methodological gap about the empirical indicators, the vision of a knowledge-based society determines at least the perception of the Western societies. In a first step the author will pinpoint the assumptions about the knowledge-based society on three levels: on the societal, on the organisational and on the individual level. These assumptions are relied on the following topics: a) The role of the information and communication technologies; b) The dynamic development of globalisation as an ‘evolutionary’ process; c) The increasing importance of knowledge management within organisations; d) The changing role of the state within the economic processes. Not only the differentiation between the levels but also the revision of the assumptions of a knowledge-based society will show that the ‘topics raised in the debates’ cannot be considered as the results of a profound societal paradigm shift. However what seems very impressive is the normative and virtual shift towards a concept of modernity, which strongly focuses on the role of technology as a driving force as well as on the global economic markets, which has to be accepted. Therefore – according to the official debate - the successful adaptation of these processes seems the only way to meet the knowledge-based society. Analysing the societal changes on the three levels, the label ‘knowledge-based society’ can be seen critically. Therefore the main question of Theodor W. Adorno during the 16th Congress of Sociology in 1968 did not loose its actuality. Facing the societal changes he asked whether we are still living in the industrial society or already in a post-industrial state. Thinking about the knowledge-based society according to these two options, this exercise would enrich the whole debate in terms of social inequality, political, economic exclusion processes and at least the power relationship between social groups.
Resumo:
Doctoral Thesis in Information Systems and Technologies Area of Engineering and Manag ement Information Systems
Resumo:
The fractional order calculus (FOC) is as old as the integer one although up to recently its application was exclusively in mathematics. Many real systems are better described with FOC differential equations as it is a well-suited tool to analyze problems of fractal dimension, with long-term “memory” and chaotic behavior. Those characteristics have attracted the engineers' interest in the latter years, and now it is a tool used in almost every area of science. This paper introduces the fundamentals of the FOC and some applications in systems' identification, control, mechatronics, and robotics, where it is a promissory research field.
Resumo:
Leaves are mainly responsible for food production in vascular plants. Studying individual leaves can reveal important characteristics of the whole plant, namely its health condition, nutrient status, the presence of viruses and rooting ability. One technique that has been used for this purpose is Electrical Impedance Spectroscopy, which consists of determining the electrical impedance spectrum of the leaf. In this paper we use EIS and apply the tools of Fractional Calculus to model and characterize six species. Two modeling approaches are proposed: firstly, Resistance, Inductance, Capacitance electrical networks are used to approximate the leaves’ impedance spectra; afterwards, fractional-order transfer functions are considered. In both cases the model parameters can be correlated with physical characteristics of the leaves.
Resumo:
The Maxwell equations play a fundamental role in the electromagnetic theory and lead to models useful in physics and engineering. This formalism involves integer-order differential calculus, but the electromagnetic diffusion points towards the adoption of a fractional calculus approach. This study addresses the skin effect and develops a new method for implementing fractional-order inductive elements. Two genetic algorithms are adopted, one for the system numerical evaluation and another for the parameter identification, both with good results.
Resumo:
In this paper we consider a complex-order forced van der Pol oscillator. The complex derivative Dα1jβ, with α, β ∈ ℝ+, is a generalization of the concept of an integer derivative, where α = 1, β = 0. The Fourier transforms of the periodic solutions of the complex-order forced van der Pol oscillator are computed for various values of parameters such as frequency ω and amplitude b of the external forcing, the damping μ, and parameters α and β. Moreover, we consider two cases: (i) b = 1, μ = {1.0, 5.0, 10.0}, and ω = {0.5, 2.46, 5.0, 20.0}; (ii) ω = 20.0, μ = {1.0, 5.0, 10.0}, and b = {1.0, 5.0, 10.0}. We verified that most of the signal energy is concentrated in the fundamental harmonic ω0. We also observed that the fundamental frequency of the oscillations ω0 varies with α and μ. For the range of tested values, the numerical fitting led to logarithmic approximations for system (7) in the two cases (i) and (ii). In conclusion, we verify that by varying the parameter values α and β of the complex-order derivative in expression (7), we accomplished a very effective way of perturbing the dynamical behavior of the forced van der Pol oscillator, which is no longer limited to parameters b and ω.
Resumo:
Expanding far beyond traditional applications at telecommunications wavelengths, the SiC photonic devices has recently proven its merits for working with visible range optical signals. Reconfigurable wavelength selectors are essential sub-systems for implementing reconfigurable WDM networks and optical signal processing. Visible range to telecom band spectral translation in SiC/Si can be accomplished using wavelength selector under appropriated optical bias, acting as reconfigurable active filters. In this paper we present a monolithically integrated wavelength selector based on a multilayer SiC/Si integrated optical filters that requires optical switches to select wavelengths. The selector filter is realized by using double pin/pin a-SiC:H photodetector with front and back biased optical gating elements. Red, green, blue and violet communication channels are transmitted together, each one with a specific bit sequence. The combined optical signal is analyzed by reading out the generated photocurrent, under different background wavelengths applied either from the front or the back side. The backgrounds acts as channel selectors that selects one or more channels by splitting portions of the input multi-channel optical signals across the front and back photodiodes. The transfer characteristics effects due to changes in steady state light, irradiation side and frequency are presented. The relationship between the optical inputs and the digital output levels is established. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
In this paper a complex-order van der Pol oscillator is considered. The complex derivative Dα±ȷβ , with α,β∈R + is a generalization of the concept of integer derivative, where α=1, β=0. By applying the concept of complex derivative, we obtain a high-dimensional parameter space. Amplitude and period values of the periodic solutions of the two versions of the complex-order van der Pol oscillator are studied for variation of these parameters. Fourier transforms of the periodic solutions of the two oscillators are also analyzed.
Resumo:
This paper is about a hierarchical structure with an event-based supervisor in a higher level and a fractional-order proportional integral (FOPI) in a lower level applied to a wind turbine. The event-based supervisor analyzes the operation conditions to determine the state of the wind turbine. This controller operate in the full load region and the main objective is to capture maximum power generation while ensuring the performance and reliability required for a wind turbine to be integrated into an electric grid. The main contribution focus on the use of fractional-order proportional integral controller which benefits from the introduction of one more tuning parameter, the integral fractional-order, taking advantage over integer order proportional integral (PI) controller. Comparisons between fractional-order pitch control and a default proportional integral pitch controller applied to a wind turbine benchmark are given and simulation results by Matlab/Simulink are shown in order to prove the effectiveness of the proposed approach.
Resumo:
This paper presents a comparison between proportional integral control approaches for variable speed wind turbines. Integer and fractional-order controllers are designed using linearized wind turbine model whilst fuzzy controller also takes into account system nonlinearities. These controllers operate in the full load region and the main objective is to extract maximum power from the wind turbine while ensuring the performance and reliability required to be integrated into an electric grid. The main contribution focuses on the use of fractional-order proportional integral (FOPI) controller which benefits from the introduction of one more tuning parameter, the integral fractional-order, taking advantage over integer order proportional integral (PI) controller. A comparison between proposed control approaches for the variable speed wind turbines is presented using a wind turbine benchmark model in the Matlab/Simulink environment. Results show that FOPI has improved system performance when compared with classical PI and fuzzy PI controller outperforms the integer and fractional-order control due to its capability to deal with system nonlinearities and uncertainties. © 2014 IEEE.
Resumo:
The self similar branching arrangement of the airways makes the respiratory system an ideal candidate for the application of fractional calculus theory. The fractal geometry is typically characterized by a recurrent structure. This study investigates the identification of a model for the respiratory tree by means of its electrical equivalent based on intrinsic morphology. Measurements were obtained from seven volunteers, in terms of their respiratory impedance by means of its complex representation for frequencies below 5 Hz. A parametric modeling is then applied to the complex valued data points. Since at low-frequency range the inertance is negligible, each airway branch is modeled by using gamma cell resistance and capacitance, the latter having a fractional-order constant phase element (CPE), which is identified from measurements. In addition, the complex impedance is also approximated by means of a model consisting of a lumped series resistance and a lumped fractional-order capacitance. The results reveal that both models characterize the data well, whereas the averaged CPE values are supraunitary and subunitary for the ladder network and the lumped model, respectively.
Resumo:
This paper presents the design and compares the performance of linear, decoupled and direct power controllers (DPC) for three-phase matrix converters operating as unified power flow controllers (UPFC). A simplified steady-state model of the matrix converter-based UPFC fitted with a modified Venturini high-frequency pulse width modulator is first used to design the linear controllers for the transmission line active (P) and reactive (Q) powers. In order to minimize the resulting cross coupling between P and Q power controllers, decoupled linear controllers (DLC) are synthesized using inverse dynamics linearization. DPC are then developed using sliding-mode control techniques, in order to guarantee both robustness and decoupled control. The designed P and Q power controllers are compared using simulations and experimental results. Linear controllers show acceptable steady-state behaviour but still exhibit coupling between P and Q powers in transient operation. DLC are free from cross coupling but are parameter sensitive. Results obtained by DPC show decoupled power control with zero error tracking and faster responses with no overshoot and no steady-state error. All the designed controllers were implemented using the same digital signal processing hardware.
Resumo:
Animal locomotion is a complex process, involving the central pattern generators (neural networks, located in the spinal cord, that produce rhythmic patterns), the brainstem command systems, the steering and posture control systems and the top layer structures that decide which motor primitive is activated at a given time. Pinto and Golubitsky studied an integer CPG model for legs rhythms in bipeds. It is a four-coupled identical oscillators' network with dihedral symmetry. This paper considers a new complex order central pattern generator (CPG) model for locomotion in bipeds. A complex derivative Dα±jβ, with α, β ∈ ℜ+, j = √-1, is a generalization of the concept of an integer derivative, where α = 1, β = 0. Parameter regions where periodic solutions, identified with legs' rhythms in bipeds, occur, are analyzed. Also observed is the variation of the amplitude and period of periodic solutions with the complex order derivative.
Resumo:
This paper is on offshore wind energy conversion systems installed on the deep water and equipped with back-to-back neutral point clamped full-power converter, permanent magnet synchronous generator with an AC link. The model for the drive train is a five-mass model which incorporates the dynamic of the structure and the tower in order to emulate the effect of the moving surface. A three-level converter and a four-level converter are the two options with a fractional-order control strategy considered to equip the conversion system. Simulation studies are carried out to assess the quality of the energy injected into the electric grid. Finally, conclusions are presented. (C) 2014 Elsevier Ltd. All rights reserved.