899 resultados para vector filtering
Resumo:
Many real world image analysis problems, such as face recognition and hand pose estimation, involve recognizing a large number of classes of objects or shapes. Large margin methods, such as AdaBoost and Support Vector Machines (SVMs), often provide competitive accuracy rates, but at the cost of evaluating a large number of binary classifiers, thus making it difficult to apply such methods when thousands or millions of classes need to be recognized. This thesis proposes a filter-and-refine framework, whereby, given a test pattern, a small number of candidate classes can be identified efficiently at the filter step, and computationally expensive large margin classifiers are used to evaluate these candidates at the refine step. Two different filtering methods are proposed, ClassMap and OVA-VS (One-vs.-All classification using Vector Search). ClassMap is an embedding-based method, works for both boosted classifiers and SVMs, and tends to map the patterns and their associated classes close to each other in a vector space. OVA-VS maps OVA classifiers and test patterns to vectors based on the weights and outputs of weak classifiers of the boosting scheme. At runtime, finding the strongest-responding OVA classifier becomes a classical vector search problem, where well-known methods can be used to gain efficiency. In our experiments, the proposed methods achieve significant speed-ups, in some cases up to two orders of magnitude, compared to exhaustive evaluation of all OVA classifiers. This was achieved in hand pose recognition and face recognition systems where the number of classes ranges from 535 to 48,600.
Resumo:
A neural model of peripheral auditory processing is described and used to separate features of coarticulated vowels and consonants. After preprocessing of speech via a filterbank, the model splits into two parallel channels, a sustained channel and a transient channel. The sustained channel is sensitive to relatively stable parts of the speech waveform, notably synchronous properties of the vocalic portion of the stimulus it extends the dynamic range of eighth nerve filters using coincidence deteectors that combine operations of raising to a power, rectification, delay, multiplication, time averaging, and preemphasis. The transient channel is sensitive to critical features at the onsets and offsets of speech segments. It is built up from fast excitatory neurons that are modulated by slow inhibitory interneurons. These units are combined over high frequency and low frequency ranges using operations of rectification, normalization, multiplicative gating, and opponent processing. Detectors sensitive to frication and to onset or offset of stop consonants and vowels are described. Model properties are characterized by mathematical analysis and computer simulations. Neural analogs of model cells in the cochlear nucleus and inferior colliculus are noted, as are psychophysical data about perception of CV syllables that may be explained by the sustained transient channel hypothesis. The proposed sustained and transient processing seems to be an auditory analog of the sustained and transient processing that is known to occur in vision.
Resumo:
A neural model is presented of how cortical areas V1, V2, and V4 interact to convert a textured 2D image into a representation of curved 3D shape. Two basic problems are solved to achieve this: (1) Patterns of spatially discrete 2D texture elements are transformed into a spatially smooth surface representation of 3D shape. (2) Changes in the statistical properties of texture elements across space induce the perceived 3D shape of this surface representation. This is achieved in the model through multiple-scale filtering of a 2D image, followed by a cooperative-competitive grouping network that coherently binds texture elements into boundary webs at the appropriate depths using a scale-to-depth map and a subsequent depth competition stage. These boundary webs then gate filling-in of surface lightness signals in order to form a smooth 3D surface percept. The model quantitatively simulates challenging psychophysical data about perception of prolate ellipsoids (Todd and Akerstrom, 1987, J. Exp. Psych., 13, 242). In particular, the model represents a high degree of 3D curvature for a certain class of images, all of whose texture elements have the same degree of optical compression, in accordance with percepts of human observers. Simulations of 3D percepts of an elliptical cylinder, a slanted plane, and a photo of a golf ball are also presented.
Resumo:
This article describes neural network models for adaptive control of arm movement trajectories during visually guided reaching and, more generally, a framework for unsupervised real-time error-based learning. The models clarify how a child, or untrained robot, can learn to reach for objects that it sees. Piaget has provided basic insights with his concept of a circular reaction: As an infant makes internally generated movements of its hand, the eyes automatically follow this motion. A transformation is learned between the visual representation of hand position and the motor representation of hand position. Learning of this transformation eventually enables the child to accurately reach for visually detected targets. Grossberg and Kuperstein have shown how the eye movement system can use visual error signals to correct movement parameters via cerebellar learning. Here it is shown how endogenously generated arm movements lead to adaptive tuning of arm control parameters. These movements also activate the target position representations that are used to learn the visuo-motor transformation that controls visually guided reaching. The AVITE model presented here is an adaptive neural circuit based on the Vector Integration to Endpoint (VITE) model for arm and speech trajectory generation of Bullock and Grossberg. In the VITE model, a Target Position Command (TPC) represents the location of the desired target. The Present Position Command (PPC) encodes the present hand-arm configuration. The Difference Vector (DV) population continuously.computes the difference between the PPC and the TPC. A speed-controlling GO signal multiplies DV output. The PPC integrates the (DV)·(GO) product and generates an outflow command to the arm. Integration at the PPC continues at a rate dependent on GO signal size until the DV reaches zero, at which time the PPC equals the TPC. The AVITE model explains how self-consistent TPC and PPC coordinates are autonomously generated and learned. Learning of AVITE parameters is regulated by activation of a self-regulating Endogenous Random Generator (ERG) of training vectors. Each vector is integrated at the PPC, giving rise to a movement command. The generation of each vector induces a complementary postural phase during which ERG output stops and learning occurs. Then a new vector is generated and the cycle is repeated. This cyclic, biphasic behavior is controlled by a specialized gated dipole circuit. ERG output autonomously stops in such a way that, across trials, a broad sample of workspace target positions is generated. When the ERG shuts off, a modulator gate opens, copying the PPC into the TPC. Learning of a transformation from TPC to PPC occurs using the DV as an error signal that is zeroed due to learning. This learning scheme is called a Vector Associative Map, or VAM. The VAM model is a general-purpose device for autonomous real-time error-based learning and performance of associative maps. The DV stage serves the dual function of reading out new TPCs during performance and reading in new adaptive weights during learning, without a disruption of real-time operation. YAMs thus provide an on-line unsupervised alternative to the off-line properties of supervised error-correction learning algorithms. YAMs and VAM cascades for learning motor-to-motor and spatial-to-motor maps are described. YAM models and Adaptive Resonance Theory (ART) models exhibit complementary matching, learning, and performance properties that together provide a foundation for designing a total sensory-cognitive and cognitive-motor autonomous system.
Resumo:
This article compares the performance of Fuzzy ARTMAP with that of Learned Vector Quantization and Back Propagation on a handwritten character recognition task. Training with Fuzzy ARTMAP to a fixed criterion used many fewer epochs. Voting with Fuzzy ARTMAP yielded the highest recognition rates.
Resumo:
Therapeutic anticancer vaccines are designed to boost patients' immune responses to tumors. One approach is to use a viral vector to deliver antigen to in situ DCs, which then activate tumor-specific T cell and antibody responses. However, vector-specific neutralizing antibodies and suppressive cell populations such as Tregs remain great challenges to the efficacy of this approach. We report here that an alphavirus vector, packaged in virus-like replicon particles (VRP) and capable of efficiently infecting DCs, could be repeatedly administered to patients with metastatic cancer expressing the tumor antigen carcinoembryonic antigen (CEA) and that it overcame high titers of neutralizing antibodies and elevated Treg levels to induce clinically relevant CEA-specific T cell and antibody responses. The CEA-specific antibodies mediated antibody-dependent cellular cytotoxicity against tumor cells from human colorectal cancer metastases. In addition, patients with CEA-specific T cell responses exhibited longer overall survival. These data suggest that VRP-based vectors can overcome the presence of neutralizing antibodies to break tolerance to self antigen and may be clinically useful for immunotherapy in the setting of tumor-induced immunosuppression.
Resumo:
BACKGROUND: Integrated vector management (IVM) is increasingly being recommended as an option for sustainable malaria control. However, many malaria-endemic countries lack a policy framework to guide and promote the approach. The objective of the study was to assess knowledge and perceptions in relation to current malaria vector control policy and IVM in Uganda, and to make recommendations for consideration during future development of a specific IVM policy. METHODS: The study used a structured questionnaire to interview 34 individuals working at technical or policy-making levels in health, environment, agriculture and fisheries sectors. Specific questions on IVM focused on the following key elements of the approach: integration of chemical and non-chemical interventions of vector control; evidence-based decision making; inter-sectoral collaboration; capacity building; legislation; advocacy and community mobilization. RESULTS: All participants were familiar with the term IVM and knew various conventional malaria vector control (MVC) methods. Only 75% thought that Uganda had a MVC policy. Eighty percent (80%) felt there was inter-sectoral collaboration towards IVM, but that it was poor due to financial constraints, difficulties in involving all possible sectors and political differences. The health, environment and agricultural sectors were cited as key areas requiring cooperation in order for IVM to succeed. Sixty-seven percent (67%) of participants responded that communities were actively being involved in MVC, while 48% felt that the use of research results for evidence-based decision making was inadequate or poor. A majority of the participants felt that malaria research in Uganda was rarely used to facilitate policy changes. Suggestions by participants for formulation of specific and effective IVM policy included: revising the MVC policy and IVM-related policies in other sectors into a single, unified IVM policy and, using legislation to enforce IVM in development projects. CONCLUSION: Integrated management of malaria vectors in Uganda remains an underdeveloped component of malaria control policy. Cooperation between the health and other sectors needs strengthening and funding for MVC increased in order to develop and effectively implement an appropriate IVM policy. Continuous engagement of communities by government as well as monitoring and evaluation of vector control programmes will be crucial for sustaining IVM in the country.
Resumo:
A preclinical safety study was conducted to evaluate the short- and long-term toxicity of a recombinant adeno-associated virus serotype 8 (AAV2/8) vector that has been developed as an immune-modulatory adjunctive therapy to recombinant human acid α-glucosidase (rhGAA, Myozyme) enzyme replacement treatment (ERT) for patients with Pompe disease (AAV2/8-LSPhGAApA). The AAV2/8-LSPhGAApA vector at 1.6 × 10(13) vector particles/kg, after intravenous injection, did not cause significant short- or long-term toxicity. Recruitment of CD4(+) (but not CD8(+)) lymphocytes to the liver was elevated in the vector-dosed male animals at study day (SD) 15, and in group 8 animals at SD 113, in comparison to their respective control animals. Administration of the vector, either prior to or after the one ERT injection, uniformly prevented the hypersensitivity induced by subsequent ERT in males, but not always in female animals. The vector genome was sustained in all tissues through 16-week postdosing, except for in blood with a similar tissue tropism between males and females. Administration of the vector alone, or combined with the ERT, was effective in producing significantly increased GAA activity and consequently decreased glycogen accumulation in multiple tissues, and the urine biomarker, Glc4, was significantly reduced. The efficacy of the vector (or with ERT) was better in males than in females, as demonstrated both by the number of tissues showing significantly effective responses and the extent of response in a given tissue. Given the lack of toxicity for AAV2/8LSPhGAApA, further consideration of clinical translation is warranted in Pompe disease.
Resumo:
info:eu-repo/semantics/published
Resumo:
The classical Purcell's vector method, for the construction of solutions to dense systems of linear equations is extended to a flexible orthogonalisation procedure. Some properties are revealed of the orthogonalisation procedure in relation to the classical Gauss-Jordan elimination with or without pivoting. Additional properties that are not shared by the classical Gauss-Jordan elimination are exploited. Further properties related to distributed computing are discussed with applications to panel element equations in subsonic compressible aerodynamics. Using an orthogonalisation procedure within panel methods enables a functional decomposition of the sequential panel methods and leads to a two-level parallelism.
Resumo:
A higher order version of the Hopfield neural network is presented which will perform a simple vector quantisation or clustering function. This model requires no penalty terms to impose constraints in the Hopfield energy, in contrast to the usual one where the energy involves only terms quadratic in the state vector. The energy function is shown to have no local minima within the unit hypercube of the state vector so the network only converges to valid final states. Optimisation trials show that the network can consistently find optimal clusterings for small, trial problems and near optimal ones for a large data set consisting of the intensity values from the digitised, grey-level image.
Resumo:
Software metrics are the key tool in software quality management. In this paper, we propose to use support vector machines for regression applied to software metrics to predict software quality. In experiments we compare this method with other regression techniques such as Multivariate Linear Regression, Conjunctive Rule and Locally Weighted Regression. Results on benchmark dataset MIS, using mean absolute error, and correlation coefficient as regression performance measures, indicate that support vector machines regression is a promising technique for software quality prediction. In addition, our investigation of PCA based metrics extraction shows that using the first few Principal Components (PC) we can still get relatively good performance.
Resumo:
A new technique for mode shape expansion in structural dynamic applications is presented based on the perturbed force vector approach. The proposed technique can directly adopt the measured incomplete modal data and include the effect of the perturbation between the analytical and test models. The results show that the proposed technique can provide very accurate expanded mode shapes, especially in cases when significant modelling error exists in the analytical model and limited measurements are available.
Resumo:
Noise is one of the main factors degrading the quality of original multichannel remote sensing data and its presence influences classification efficiency, object detection, etc. Thus, pre-filtering is often used to remove noise and improve the solving of final tasks of multichannel remote sensing. Recent studies indicate that a classical model of additive noise is not adequate enough for images formed by modern multichannel sensors operating in visible and infrared bands. However, this fact is often ignored by researchers designing noise removal methods and algorithms. Because of this, we focus on the classification of multichannel remote sensing images in the case of signal-dependent noise present in component images. Three approaches to filtering of multichannel images for the considered noise model are analysed, all based on discrete cosine transform in blocks. The study is carried out not only in terms of conventional efficiency metrics used in filtering (MSE) but also in terms of multichannel data classification accuracy (probability of correct classification, confusion matrix). The proposed classification system combines the pre-processing stage where a DCT-based filter processes the blocks of the multichannel remote sensing image and the classification stage. Two modern classifiers are employed, radial basis function neural network and support vector machines. Simulations are carried out for three-channel image of Landsat TM sensor. Different cases of learning are considered: using noise-free samples of the test multichannel image, the noisy multichannel image and the pre-filtered one. It is shown that the use of the pre-filtered image for training produces better classification in comparison to the case of learning for the noisy image. It is demonstrated that the best results for both groups of quantitative criteria are provided if a proposed 3D discrete cosine transform filter equipped by variance stabilizing transform is applied. The classification results obtained for data pre-filtered in different ways are in agreement for both considered classifiers. Comparison of classifier performance is carried out as well. The radial basis neural network classifier is less sensitive to noise in original images, but after pre-filtering the performance of both classifiers is approximately the same.