952 resultados para vascular targeting
Resumo:
PURPOSE: The antiangiogenic effect of an antisense oligodeoxynucleotide (ODN) targeting insulin receptor substrate (IRS)-1 was evaluated on rat corneal neovascularization. METHODS: Eyes with neovessels were treated with subconjunctival injections of IRS-1 antisense oligonucleotide (ASODN), IRS-1 sense ODN (SODN), or PBS. At 8 and 24 hours after the first subconjunctival injection, the expression of IRS-1, VEGF, and IL-1beta mRNA was evaluated. IRS-1 protein levels were also measured at 8 hours by Western blot analysis (n = 4/group). On day 10, corneal neovascularization was quantified in flatmount corneas of rats treated daily from days 4 to 9. RESULTS: On day 10, new vessels covered 95.5% +/- 4% of the corneal area in PBS-treated eyes, 92% +/- 7% in SODN-treated eyes and 59% +/- 20% in ASODN-treated eyes (P < 0.001). In the ASODN-treated group, the expression and synthesis of IRS-1 were significantly downregulated when compared with the control groups. ASODN did not significantly affect the expression of VEGF but significantly decreased the expression of IL-1beta at 24 hours (P = 0.04). CONCLUSIONS: Subconjunctival injections of IRS-1 antisense ODN significantly inhibit rat corneal neovascularization. This effect may be mediated by a downregulation of IL-1beta. IRS-1 proteins may be interesting targets for the regulation of angiogenesis mediated by insulin, hypoxia, or inflammation.
Resumo:
BACKGROUND: Vascular reconstructions are becoming challenging due to the comorbidity of the aging population and since the introduction of minimally invasive approaches. Many sutureless anastomosis devices have been designed to facilitate the cardiovascular surgeon's work and the vascular join (VJ) is one of these. We designed an animal study to assess its reliability and long-term efficacy. METHODS: VJ allows the construction of end-to-end and end-to-side anastomoses. It consists of two metallic crowns fixed to the extremity of the two conduits so that vessel edges are joined layer by layer. There is no foreign material exposed to blood. In adult sheep both carotid arteries were prepared and severed. End-to-end anastomoses were performed using the VJ device on one side and the classical running suture technique on the other side. Animals were followed-up with Duplex-scan every 3 months and sacrificed after 12 months. Histopathological analysis was carried out. RESULTS: In 20 animals all 22 sutureless anastomoses were successfully completed in less than 2 min versus 6 +/- 3 min for running suture. Duplex showed the occlusion of three controls and one sutureless anastomosis. Two controls and one sutureless had stenosis >50%. Histology showed very thin layer of myointimal hyperplasia (50 +/- 10 microm) in the sutureless group versus 300 +/- 27 microm in the control. No significant inflammatory reaction was detected. CONCLUSIONS: VJ provides edge-to-edge vascular repair that can be considered the most physiological way to restore vessel continuity. For the first time, in healthy sheep, an anastomotic device provided better results than suture technique.
Resumo:
The lymphatic vasculature constitutes a highly specialized part of the vascular system that is essential for the maintenance of interstitial fluid balance, uptake of dietary fat, and immune response. Recently, there has been an increased awareness of the importance of lymphatic vessels in many common pathological conditions, such as tumor cell dissemination and chronic inflammation. Studies of embryonic development and genetically engineered animal models coupled with the discovery of mutations underlying human lymphedema syndromes have contributed to our understanding of mechanisms regulating normal and pathological lymphatic morphogenesis. It is now crucial to use this knowledge for the development of novel therapies for human diseases.
Resumo:
BACKGROUND: Acute exposure to high altitude stimulates free radical formation in lowlanders, yet whether this persists during chronic exposure in healthy, well-adapted and maladapted highlanders suffering from chronic mountain sickness (CMS) remains to be established. METHODS: Oxidative-nitrosative stress (as determined by the presence of the biomarkers ascorbate radical [A •- ], via electron paramagnetic resonance spectroscopy, and nitrite [NO 2 2 ], via ozone-based chemiluminescence) was assessed in venous blood of 25 male highlanders in Bolivia living at 3,600 m with CMS (n 5 13, CMS 1 ) and without CMS (n 5 12, CMS 2 ). Twelve age- and activity-matched, healthy, male lowlanders were examined at sea level and during acute hypoxia. We also measured fl ow-mediated dilatation (FMD), arterial stiffness defined by augmentation index normalized for a heart rate of 75 beats/min (AIx-75), and carotid intima-media thickness (IMT). RESULTS: Compared with normoxic lowlanders, oxidative-nitrosative stress was moderately increased in the CMS 2 group ( P , .05), as indicated by elevated A •- (3,191 457 arbitrary units [AU] vs 2,640 445 AU) and lower NO 2 2 (206 55 nM vs 420 128 nM), whereas vascular function remained preserved. This was comparable to that observed during acute hypoxia in lowlanders in whom vascular dysfunction is typically observed. In contrast, this response was markedly exaggerated in CMS 1 group (A •- , 3,765 429 AU; NO 2 2 , 148 50 nM) compared with both the CMS 2 group and lowlanders ( P , .05). This was associated with systemic vascular dysfunction as indicated by lower ( P , .05 vs CMS 2 ) FMD (4.2% 0.7% vs 7.6% 1.7%) and increased AIx-75 (23% 8% vs 12% 7%) and carotid IMT (714 127 m M vs 588 94 m M). CONCLUSIONS: Healthy highlanders display a moderate, sustained elevation in oxidative-nitrosative stress that, unlike the equivalent increase evoked by acute hypoxia in healthy lowlanders, failed to affect vascular function. Its more marked elevation in patients with CMS may contribute to systemic vascular dysfunction.
Resumo:
Recombinant human tumour necrosis factor (TNF) has a selective effect on angiogenic vessels in tumours. Given that it induces vasoplegia, its clinical use has been limited to administration through isolated limb perfusion (ILP) for regionally advanced melanomas and soft tissue sarcomas of the limbs. When combined with the alkylating agent melphalan, a single ILP produces a very high objective response rate. In melanoma, the complete response (CR) rate is around 80% and the overall objective response rate greater than 90%. In soft tissue sarcomas that are inextirpable, ILP is a neoadjuvant treatment resulting in limb salvage in 80% of the cases. The CR rate averages 20% and the objective response rate is around 80%. The mode of action of TNF-based ILP involves two distinct and successive effects on the tumour-associated vasculature: first, an increase in endothelium permeability leading to improved chemotherapy penetration within the tumour tissue, and second, a selective killing of angiogenic endothelial cells resulting in tumour vessel destruction. The mechanism whereby these events occur involves rapid (of the order of minutes) perturbation of cell-cell adhesive junctions and inhibition of alphavbeta3 integrin signalling in tumour-associated vessels, followed by massive death of endothelial cells and tumour vascular collapse 24 hours later. New, promising approaches for the systemic use of TNF in cancer therapy include TNF targeting by means of single chain antibodies or endothelial cell ligands, or combined administration with drugs perturbing integrin-dependent signalling and sensitizing angiogenic endothelial cells to TNF-induced death.
Resumo:
Efficient initiation by the DNA polymerase of adenovirus type 2 requires nuclear factor I (NFI), a cellular sequence-specific transcription factor. Three functions of NFI--dimerization, DNA binding, and activation of DNA replication--are colocalized within the N-terminal portion of the protein. To define more precisely the role of NFI in viral DNA replication, a series of site-directed mutations within the N-terminal domain have been generated, thus allowing the separation of all three functions contained within this region. Impairment of the dimerization function prevents sequence-specific DNA binding and in turn abolishes the NFI-mediated activation of DNA replication. NFI DNA-binding activity, although necessary, is not sufficient to activate the initiation of adenovirus replication. A distinct class of NFI mutations that abolish the recruitment of the viral DNA polymerase to the origin also prevent the activation of replication. Thus, a direct interaction of NFI with the viral DNA polymerase complex is required to form a stable and active preinitiation complex on the origin and is responsible for the activation of replication by NFI.
Resumo:
The effect of circulating arginine vasopressin (AVP) on blood pressure, heart rate, and skin blood flow was assessed in normotensive subjects, mild hypertensive patients, and patients with congestive heart failure, utilizing the specific antagonist of AVP at the vascular receptor level, d(CH2)5Tyr(Me)AVP (5 micrograms/kg i.v.). The renin system of the normal volunteers treated with the AVP antagonist was either intact or acutely blocked with the angiotensin converting-enzyme inhibitor captopril (25 mg p.o.). In some volunteers, the cardiovascular effect of AVP released by Finnish sauna or cigarette smoking was studied. In patients with congestive heart failure, hemodynamic measurements (pressures and cardiac output) were obtained invasively. Acute blockade of AVP vascular receptors produced no cardiovascular effect unless plasma AVP levels were markedly elevated. In our experience, abnormally high circulating AVP appears to be responsible for the decrease in skin blood flow induced by cigarette smoking and to some extent for the maintenance of vascular tone in the rare patients with particularly severe congestive heart failure.
Resumo:
Texte intégral: http://www.springerlink.com/content/3q68180337551r47/fulltext.pdf
Resumo:
In normal mice, the lentiviral vector (LV) is very efficient to target the RPE cells, but transduces retinal neurons well only during development. In the present study, the tropism of LV has been investigated in the degenerating retina of mice, knowing that the retina structure changes during degeneration. We postulated that the viral transduction would be increased by the alteration of the outer limiting membrane (OLM). Two different LV pseudotypes were tested using the VSVG and the Mokola envelopes, as well as two animal models of retinal degeneration: light-damaged Balb-C and Rhodopsin knockout (Rho-/-) mice. After light damage, the OLM is altered and no significant increase of the number of transduced photoreceptors can be obtained with a LV-VSVG-Rhop-GFP vector. In the Rho-/- mice, an alteration of the OLM was also observed, but the possibility of transducing photoreceptors was decreased, probably by ongoing gliosis. The use of a ubiquitous promoter allows better photoreceptor transduction, suggesting that photoreceptor-specific promoter activity changes during late stages of photoreceptor degeneration. However, the number of targeted photoreceptors remains low. In contrast, LV pseudotyped with the Mokola envelope allows a wide dispersion of the vector into the retina (corresponding to the injection bleb) with preferential targeting of Müller cells, a situation which does not occur in the wild-type retina. Mokola-pseudotyped lentiviral vectors may serve to engineer these glial cells to deliver secreted therapeutic factors to a diseased area of the retina.
Resumo:
The Attorney General’s Consumer Protection Division receives hundreds of calls and consumer complaints every year. Follow these tips to avoid unexpected expense and disappointments. This record is about: Beware of Scheme Targeting African Americans
Resumo:
We evaluate the effect of a 2003 reform in the Spanish income tax on fertility and the employment of mothers with small children. The reform introduced a tax credit for working mothers with children under the age of three, while also increasing child deductions for all households with children. Theoretically, given the interplay of these two components, the expected effect of the reform is ambiguous on both outcomes. We find that the combined reforms significantly increased both fertility (by almost five percent) and the employment rate of mothers with children under three (by two percent). These effects were more pronounced among less-educated women. In addition, to disentangle the impact of the two reform components, we use an earlier reform that increased child deductions in 1999. We find that the child deductions affect mothers employment negatively, which implies that the 2003 tax credit would have increased employment even more (up to five percent) in the absence of the change in child deductions.
Resumo:
Obesity and insulin resistance represent a problem of utmost clinical significance worldwide. Insulin-resistant states are characterized by the inability of insulin to induce proper signal transduction leading to defective glucose uptake in skeletal muscle tissue and impaired insulin-induced vasodilation. In various pathophysiological models, melatonin interacts with crucial molecules of the insulin signaling pathway, but its effects on glucose homeostasis are not known. In a diet-induced mouse model of insulin resistance and normal chow-fed control mice, we sought to assess the effects of an 8-wk oral treatment with melatonin on insulin and glucose tolerance and to understand underlying mechanisms. In high-fat diet-fed mice, but not in normal chow-fed control mice, melatonin significantly improved insulin sensitivity and glucose tolerance, as evidenced by a higher rate of glucose infusion to maintain euglycemia during hyperinsulinemic clamp studies and an attenuated hyperglycemic response to an ip glucose challenge. Regarding underlying mechanisms, we found that melatonin restored insulin-induced vasodilation to skeletal muscle, a major site of glucose utilization. This was due, at least in part, to the improvement of insulin signal transduction in the vasculature, as evidenced by increased insulin-induced phosphorylation of Akt and endoethelial nitric oxide synthase in aortas harvested from melatonin-treated high-fat diet-fed mice. In contrast, melatonin had no effect on the ability of insulin to promote glucose uptake in skeletal muscle tissue in vitro. These data demonstrate for the first time that in a diet-induced rodent model of insulin resistance, melatonin improves glucose homeostasis by restoring the vascular action of insulin.