973 resultados para vapour liquid equilibria


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent research on particle size distributions and particle concentrations near a busy road cannot be explained by the conventional mechanisms for particle evolution of combustion aerosols. Specifically they appear to be inadequate to explain the experimental observations of particle transformation and the evolution of the total number concentration. This resulted in the development of a new mechanism based on their thermal fragmentation, for the evolution of combustion aerosol nano-particles. A complex and comprehensive pattern of evolution of combustion aerosols, involving particle fragmentation, was then proposed and justified. In that model it was suggested that thermal fragmentation occurs in aggregates of primary particles each of which contains a solid graphite/carbon core surrounded by volatile molecules bonded to the core by strong covalent bonds. Due to the presence of strong covalent bonds between the core and the volatile (frill) molecules, such primary composite particles can be regarded as solid, despite the presence of significant (possibly, dominant) volatile component. Fragmentation occurs when weak van der Waals forces between such primary particles are overcome by their thermal (Brownian) motion. In this work, the accepted concept of thermal fragmentation is advanced to determine whether fragmentation is likely in liquid composite nano-particles. It has been demonstrated that at least at some stages of evolution, combustion aerosols contain a large number of composite liquid particles containing presumably several components such as water, oil, volatile compounds, and minerals. It is possible that such composite liquid particles may also experience thermal fragmentation and thus contribute to, for example, the evolution of the total number concentration as a function of distance from the source. Therefore, the aim of this project is to examine theoretically the possibility of thermal fragmentation of composite liquid nano-particles consisting of immiscible liquid v components. The specific focus is on ternary systems which include two immiscible liquid droplets surrounded by another medium (e.g., air). The analysis shows that three different structures are possible, the complete encapsulation of one liquid by the other, partial encapsulation of the two liquids in a composite particle, and the two droplets separated from each other. The probability of thermal fragmentation of two coagulated liquid droplets is discussed and examined for different volumes of the immiscible fluids in a composite liquid particle and their surface and interfacial tensions through the determination of the Gibbs free energy difference between the coagulated and fragmented states, and comparison of this energy difference with the typical thermal energy kT. The analysis reveals that fragmentation was found to be much more likely for a partially encapsulated particle than a completely encapsulated particle. In particular, it was found that thermal fragmentation was much more likely when the volume ratio of the two liquid droplets that constitute the composite particle are very different. Conversely, when the two liquid droplets are of similar volumes, the probability of thermal fragmentation is small. It is also demonstrated that the Gibbs free energy difference between the coagulated and fragmented states is not the only important factor determining the probability of thermal fragmentation of composite liquid particles. The second essential factor is the actual structure of the composite particle. It is shown that the probability of thermal fragmentation is also strongly dependent on the distance that each of the liquid droplets should travel to reach the fragmented state. In particular, if this distance is larger than the mean free path for the considered droplets in the air, the probability of thermal fragmentation should be negligible. In particular, it follows form here that fragmentation of the composite particle in the state with complete encapsulation is highly unlikely because of the larger distance that the two droplets must travel in order to separate. The analysis of composite liquid particles with the interfacial parameters that are expected in combustion aerosols demonstrates that thermal fragmentation of these vi particles may occur, and this mechanism may play a role in the evolution of combustion aerosols. Conditions for thermal fragmentation to play a significant role (for aerosol particles other than those from motor vehicle exhaust) are determined and examined theoretically. Conditions for spontaneous transformation between the states of composite particles with complete and partial encapsulation are also examined, demonstrating the possibility of such transformation in combustion aerosols. Indeed it was shown that for some typical components found in aerosols that transformation could take place on time scales less than 20 s. The analysis showed that factors that influenced surface and interfacial tension played an important role in this transformation process. It is suggested that such transformation may, for example, result in a delayed evaporation of composite particles with significant water component, leading to observable effects in evolution of combustion aerosols (including possible local humidity maximums near a source, such as a busy road). The obtained results will be important for further development and understanding of aerosol physics and technologies, including combustion aerosols and their evolution near a source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymer microspheres loaded with bioactive particles, biomolecules, proteins, and/or growth factors play important roles in tissue engineering, drug delivery, and cell therapy. The conventional double emulsion method and a new method of electrospraying into liquid nitrogen were used to prepare bovine serum albumin (BAS)-loaded poly(lactic-co-glycolic acid) (PLGA) porous microspheres. The particle size, the surface morphology and the internal porous structure of the microspheres were observed using scanning electron microscopy (SEM). The loading efficiency, the encapsulation efficiency, and the release profile of the BSA-loaded PLGA microspheres were measured and studied. It was shown that the microspheres from double emulsion had smaller particle sizes (3-50 m), a less porous structure, a poor loading efficiency (5.2 %), and a poor encapsulation efficiency (43.5%). However, the microspheres from the electrospraying into liquid nitrogen had larger particle sizes (400-600 m), a highly porous structure, a high loading efficiency (12.2%), and a high encapsulation efficiency (93.8%). Thus the combination of electrospraying with freezing in liquid nitrogen and subsequent freeze drying represented a suitable way to produce polymer microspheres for effective loading and sustained release of proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work investigates the computer modelling of the photochemical formation of smog products such as ozone and aerosol, in a system containing toluene, NOx and water vapour. In particular, the problem of modelling this process in the Commonwealth Scientific and Industrial Research Organization (CSIRO) smog chambers, which utilize outdoor exposure, is addressed. The primary requirement for such modelling is a knowledge of the photolytic rate coefficients. Photolytic rate coefficients of species other than N02 are often related to JNo2 (rate coefficient for the photolysis ofN02) by a simple factor, but for outdoor chambers, this method is prone to error as the diurnal profiles may not be similar in shape. Three methods for the calculation of diurnal JNo2 are investigated. The most suitable method for incorporation into a general model, is found to be one which determines the photolytic rate coefficients for N02, as well as several other species, from actinic flux, absorption cross section and quantum yields. A computer model was developed, based on this method, to calculate in-chamber photolysis rate coefficients for the CSIRO smog chambers, in which ex-chamber rate coefficients are adjusted by accounting for variation in light intensity by transmittance through the Teflon walls, albedo from the chamber floor and radiation attenuation due to clouds. The photochemical formation of secondary aerosol is investigated in a series of toluene-NOx experiments, which were performed in the CSIRO smog chambers. Three stages of aerosol formation, in plots of total particulate volume versus time, are identified: a delay period in which no significant mass of aerosol is formed, a regime of rapid aerosol formation (regime 1) and a second regime of slowed aerosol formation (regime 2). Two models are presented which were developed from the experimental data. One model is empirically based on observations of discrete stages of aerosol formation and readily allows aerosol growth profiles to be calculated. The second model is based on an adaptation of published toluene photooxidation mechanisms and provides some chemical information about the oxidation products. Both models compare favorably against the experimental data. The gross effects of precursor concentrations (toluene, NOx and H20) and ambient conditions (temperature, photolysis rate) on the formation of secondary aerosol are also investigated, primarily using the mechanism model. An increase in [NOx]o results in increased delay time, rate of aerosol formation in regime 1 and volume of aerosol formed in regime 1. This is due to increased formation of dinitrocresol and furanone products. An increase in toluene results in a decrease in the delay time and an increase in the rate of aerosol formation in regime 1, due to enhanced reactivity from the toluene products, such as the radicals from the photolysis of benzaldehyde. Water vapor has very little effect on the formation of aerosol volume, except that rates are slightly increased due to more OH radicals from reaction with 0(1D) from ozone photolysis. Increased temperature results in increased volume of aerosol formed in regime 1 (increased dinitrocresol formation), while increased photolysis rate results in increased rate of aerosol formation in regime 1. Both the rate and volume of aerosol formed in regime 2 are increased by increased temperature or photolysis rate. Both models indicate that the yield of secondary particulates from hydrocarbons (mass concentration aerosol formed/mass concentration hydrocarbon precursor) is proportional to the ratio [NOx]0/[hydrocarbon]0

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel modified theory based upon Rayleigh scattering of ultrasound from composite nanoparticles with a liquid core and solid shell. We derive closed form solutions to the scattering cross-section and have applied this model to an ultrasound contrast agent consisting of a liquid-filled core (perfluorooctyl bromide, PFOB) encapsulated by a polymer shell (poly-caprolactone, PCL). Sensitivity analysis was performed to predict the dependence of the scattering cross-section upon material and dimensional parameters. A rapid increase in the scattering cross-section was achieved by increasing the compressibility of the core, validating the incorporation of high compressibility PFOB; the compressibility of the shell had little impact on the overall scattering cross-section although a more compressible shell is desirable. Changes in the density of the shell and the core result in predicted local minima in the scattering cross-section, approximately corresponding to the PFOB-PCL contrast agent considered; hence, incorporation of a lower shell density could potentially significantly improve the scattering cross-section. A 50% reduction in shell thickness relative to external radius increased the predicted scattering cross-section by 50%. Although it has often been considered that the shell has a negative effect on the echogeneity due to its low compressibility, we have shown that it can potentially play an important role in the echogeneity of the contrast agent. The challenge for the future is to identify suitable shell and core materials that meet the predicted characteristics in order to achieve optimal echogenity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigates the coefficient of performance (COP) of a hybrid liquid desiccant solar cooling system. This hybrid cooling system includes three sections: 1) conventional air-conditioning section; 2) liquid desiccant dehumidification section and 3) air mixture section. The air handling unit (AHU) with mixture variable air volume design is included in the hybrid cooling system to control humidity. In the combined system, the air is first dehumidified in the dehumidifier and then mixed with ambient air by AHU before entering the evaporator. Experiments using lithium chloride as the liquid desiccant have been carried out for the performance evaluation of the dehumidifier and regenerator. Based on the air mixture (AHU) design, the electrical coefficient of performance (ECOP), thermal coefficient of performance (TCOP) and whole system coefficient of performance (COPsys) models used in the hybrid liquid desiccant solar cooing system were developed to evaluate this system performance. These mathematical models can be used to describe the coefficient of performance trend under different ambient conditions, while also providing a convenient comparison with conventional air conditioning systems. These models provide good explanations about the relationship between the performance predictions of models and ambient air parameters. The simulation results have revealed the coefficient of performance in hybrid liquid desiccant solar cooling systems substantially depends on ambient air and dehumidifier parameters. Also, the liquid desiccant experiments prove that the latent component of the total cooling load requirements can be easily fulfilled by using the liquid desiccant dehumidifier. While cooling requirements can be met, the liquid desiccant system is however still subject to the hysteresis problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have used a scanning tunneling microscope to manipulate heteroleptic phthalocyaninato, naphthalocyaninato, porphyrinato double-decker molecules at the liquid/solid interface between 1-phenyloctane solvent and graphite. We employed nano-grafting of phthalocyanines with eight octyl chains to place these molecules into a matrix of heteroleptic double-decker molecules; the overlayer structure is epitaxial on graphite. We have also used nano-grafting to place double-decker molecules in matrices of single-layer phthalocyanines with octyl chains. Rectangular scans with a scanning tunneling microscope at low bias voltage resulted in the removal of the adsorbed doubledecker molecular layer and substituted the double-decker molecules with bilayer-stacked phthalocyanines from phenyloctane solution. Single heteroleptic double-decker molecules with lutetium sandwiched between naphthalocyanine and octaethylporphyrin were decomposed with voltage pulses from the probe tip; the top octaethylporphyrin ligand was removed and the bottom naphthalocyanine ligand remained on the surface. A domain of decomposed molecules was formed within the double-decker molecular domain, and the boundary of the decomposed molecular domain self-cured to become rectangular. We demonstrated a molecular “sliding block puzzle” with cascades of double-decker molecules on the graphite surface.