681 resultados para tribbles homologue


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein kinases play central roles in the regulation of eukaryotic and prokaryotic cell growth, division, and differentiation. The Caulobacter crescentus divL gene encodes a novel bacterial tyrosine kinase essential for cell viability and division. Although the DivL protein is homologous to the ubiquitous bacterial histidine protein kinases (HPKs), it differs from previously studied members of this protein kinase family in that it contains a tyrosine residue (Tyr-550) in the conserved H-box instead of a histidine residue, which is the expected site of autophosphorylation. DivL is autophosphorylated on Tyr-550 in vitro, and this tyrosine residue is essential for cell viability and regulation of the cell division cycle. Purified DivL also catalyzes phosphorylation of CtrA and activates transcription in vitro of the cell cycle-regulated fliF promoter. Suppressor mutations in ctrA bypass the conditional cell division phenotype of cold-sensitive divL mutants, providing genetic evidence that DivL function in cell cycle and developmental regulation is mediated, at least in part, by the global response regulator CtrA. DivL is the only reported HPK homologue whose function has been shown to require autophosphorylation on a tyrosine, and, thus, it represents a new class of kinases within this superfamily of protein kinases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Members of the transforming growth factor β (TGF-β) superfamily are involved in diverse physiological activities including development, tissue repair, hormone regulation, bone formation, cell growth, and differentiation. At the cellular level, these functions are initiated by the interaction of ligands with specific transmembrane receptors with intrinsic serine/threonine kinase activity. The signaling pathway that links receptor activation to the transcriptional regulation of the target genes is largely unknown. Recent work in Drosophila and Xenopus signaling suggested that Mad (Mothers against dpp) functions downstream of the receptors of the TGF-β family. Mammalian Mad1 has been reported to respond to bone morphogenetic protein (BMP), but not to TGF-β or activin. We report here the cloning and functional studies of a novel mammalian Mad molecule, Mad3, as well as a rat Mad1 homologue. Overexpression of Mad3 in a variety of cells stimulated basal transcriptional activity of the TGF-β/activin-responsive reporter construct, p3TP-Lux. Furthermore, expression of Mad3 could potentiate the TGF-β- and activin-induced transcriptional stimulation of p3TP-Lux. By contrast, overexpression of Mad1 inhibited the basal as well as the TGF-β/activin induced p3TP-Lux activity. These findings, therefore, support the hypothesis that Mad3 may serve as a mediator linking TGF-β/activin receptors to transcriptional regulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The basal transcription machinery of Archaea corresponds to the minimal subset of factors required for RNA polymerase II transcription in eukaryotes. Using just two factors, Archaea recruit the RNA polymerase to promoters and define the direction of transcription. Notably, the principal determinant for the orientation of transcription is not the recognition of the TATA box by the TATA-box-binding protein. Instead, transcriptional polarity is governed by the interaction of the archaeal TFIIB homologue with a conserved motif immediately upstream of the TATA box. This interaction yields an archaeal preinitiation complex with the same orientation as the analogous eukaryal complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stability parameters for individual residues in Thermus thermophilus cysteine-free RNase H were determined by native state hydrogen exchange, thus providing a unique comparison of regional thermodynamics between thermophilic and mesophilic homologues. The general distribution of stability in the thermophilic protein is similar to that of its mesophilic homologue, with a proportional increase in stability for almost all residues. As a consequence, the residue-specific stabilities of the two proteins are remarkably similar under conditions where their global stabilities are the same. These results indicate that T. thermophilus RNase H is stabilized in a delocalized fashion, preserving a finely tuned balance of stabilizing interactions throughout the structure. Therefore, although protein stability can be altered by single amino acid substitution, evolution for optimal function may require more subtle and delocalized mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ATRX is a member of the SNF2 family of helicase/ATPases that is thought to regulate gene expression via an effect on chromatin structure and/or function. Mutations in the hATRX gene cause severe syndromal mental retardation associated with α-thalassemia. Using indirect immunofluorescence and confocal microscopy we have shown that ATRX protein is associated with pericentromeric heterochromatin during interphase and mitosis. By coimmunofluorescence, ATRX localizes with a mouse homologue of the Drosophila heterochromatic protein HP1 in vivo, consistent with a previous two-hybrid screen identifying this interaction. From the analysis of a trap assay for nuclear proteins, we have shown that the localization of ATRX to heterochromatin is encoded by its N-terminal region, which contains a conserved plant homeodomain-like finger and a coiled-coil domain. In addition to its association with heterochromatin, at metaphase ATRX clearly binds to the short arms of human acrocentric chromosomes, where the arrays of ribosomal DNA are located. The unexpected association of a putative transcriptional regulator with highly repetitive DNA provides a potential explanation for the variability in phenotype of patients with identical mutations in the ATRX gene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Duchenne muscular dystrophy (DMD) is an inherited muscle-wasting disease caused by the absence of a muscle cytoskeletal protein, dystrophin. We have previously shown that utrophin, the autosomal homologue of dystrophin, is able to compensate for the absence of dystrophin in a mouse model of DMD; we have therefore undertaken a detailed study of the transcriptional regulation of utrophin to identify means of effecting its up-regulation in DMD muscle. We have previously isolated a promoter element lying within the CpG island at the 5′ end of the gene and have shown it to be synaptically regulated in vivo. In this paper, we show that there is an alternative promoter lying within the large second intron of the utrophin gene, 50 kb 3′ to exon 2. The promoter is highly regulated and drives transcription of a widely expressed unique first exon that splices into a common full-length mRNA at exon 3. The two utrophin promoters are independently regulated, and we predict that they respond to discrete sets of cellular signals. These findings significantly contribute to understanding the molecular physiology of utrophin expression and are important because the promoter reported here provides an alternative target for transcriptional activation of utrophin in DMD muscle. This promoter does not contain synaptic regulatory elements and might, therefore, be a more suitable target for pharmacological manipulation than the previously described promoter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Different cDNA clones encoding a rat homeobox gene and the mouse homologue OG-12 were cloned from adult rat brain and mouse embryo mRNA, respectively. The predicted amino acid sequences of the proteins belong to the paired-related subfamily of homeodomain proteins (Prx homeodomains). Hence, the gene was named Prx3 and the mouse and rat genes are indicated as mPrx3 and rPrx3, respectively. In the mouse as well as in the rat, the predicted Prx3 proteins share the homeodomain but have three different N termini, a 12-aa residue variation in the C terminus, and contain a 14-aa residue motif common to a subset of homeodomain proteins, termed the “aristaless domain.” Genetic mapping of Prx3 in the mouse placed this gene on chromosome 3. In situ hybridization on whole mount 12.5-day-old mouse embryos and sections of rat embryos at 14.5 and 16.5 days postcoitum revealed marked neural expression in discrete regions in the lateral and medial geniculate complex, superior and inferior colliculus, the superficial gray layer of the superior colliculus, pontine reticular formation, and inferior olive. In rat and mouse embryos, nonneuronal structures around the oral cavity and in hip and shoulder regions also expressed the Prx3 gene. In the adult rat brain, Prx3 gene expression was restricted to thalamic, tectal, and brainstem structures that include relay nuclei of the visual and auditory systems as well as other ascending systems conveying somatosensory information. Prx3 may have a role in specifying neural systems involved in processing somatosensory information, as well as in face and body structure formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nucleotide excision repair proteins have been implicated in genetic recombination by experiments in Saccharomyces cerevisiae and Drosophila melanogaster, but their role, if any, in mammalian cells is undefined. To investigate the role of the nucleotide excision repair gene ERCC1, the hamster homologue to the S. cerevisiae RAD10 gene, we disabled the gene by targeted knockout. Partial tandem duplications of the adenine phosphoribosyltransferase (APRT) gene then were constructed at the endogenous APRT locus in ERCC1− and ERCC1+ cells. To detect the full spectrum of gene-altering events, we used a loss-of-function assay in which the parental APRT+ tandem duplication could give rise to APRT− cells by homologous recombination, gene rearrangement, or point mutation. Measurement of rates and analysis of individual APRT− products indicated that gene rearrangements (principally deletions) were increased at least 50-fold, whereas homologous recombination was affected little. The formation of deletions is not caused by a general effect of the ERCC1 deficiency on gene stability, because ERCC1− cell lines with a single wild-type copy of the APRT gene yielded no increase in deletions. Thus, deletion formation is dependent on the tandem duplication, and presumably the process of homologous recombination. Recombination-dependent deletion formation in ERCC1− cells is supported by a significant decrease in a particular class of crossover products that are thought to arise by repair of a heteroduplex intermediate in recombination. We suggest that the ERCC1 gene product in mammalian cells is involved in the processing of heteroduplex intermediates in recombination and that the misprocessed intermediates in ERCC1− cells are repaired by illegitimate recombination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Control of cell identity during development is specified in large part by the unique expression patterns of multiple homeobox-containing (Hox) genes in specific segments of an embryo. Trithorax and Polycomb-group (Trx-G and Pc-G) proteins in Drosophila maintain Hox expression or repression, respectively. Mixed lineage leukemia (MLL) is frequently involved in chromosomal translocations associated with acute leukemia and is the one established mammalian homologue of Trx. Bmi-1 was first identified as a collaborator in c-myc-induced murine lymphomagenesis and is homologous to the Drosophila Pc-G member Posterior sex combs. Here, we note the axial-skeletal transformations and altered Hox expression patterns of Mll-deficient and Bmi-1-deficient mice were normalized when both Mll and Bmi-1 were deleted, demonstrating their antagonistic role in determining segmental identity. Embryonic fibroblasts from Mll-deficient compared with Bmi-1-deficient mice demonstrate reciprocal regulation of Hox genes as well as an integrated Hoxc8-lacZ reporter construct. Reexpression of MLL was able to overcome repression, rescuing expression of Hoxc8-lacZ in Mll-deficient cells. Consistent with this, MLL and BMI-I display discrete subnuclear colocalization. Although Drosophila Pc-G and Trx-G members have been shown to maintain a previously established transcriptional pattern, we demonstrate that MLL can also dynamically regulate a target Hox gene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNA methylation is an important regulator of genetic information in species ranging from bacteria to humans. DNA methylation appears to be critical for mammalian development because mice nullizygous for a targeted disruption of the DNMT1 DNA methyltransferase die at an early embryonic stage. No DNA methyltransferase mutations have been reported in humans until now. We describe here the first example of naturally occurring mutations in a mammalian DNA methyltransferase gene. These mutations occur in patients with a rare autosomal recessive disorder, which is termed the ICF syndrome, for immunodeficiency, centromeric instability, and facial anomalies. Centromeric instability of chromosomes 1, 9, and 16 is associated with abnormal hypomethylation of CpG sites in their pericentromeric satellite regions. We are able to complement this hypomethylation defect by somatic cell fusion to Chinese hamster ovary cells, suggesting that the ICF gene is conserved in the hamster and promotes de novo methylation. ICF has been localized to a 9-centimorgan region of chromosome 20 by homozygosity mapping. By searching for homologies to known DNA methyltransferases, we identified a genomic sequence in the ICF region that contains the homologue of the mouse Dnmt3b methyltransferase gene. Using the human sequence to screen ICF kindreds, we discovered mutations in four patients from three families. Mutations include two missense substitutions and a 3-aa insertion resulting from the creation of a novel 3′ splice acceptor. None of the mutations were found in over 200 normal chromosomes. We conclude that mutations in the DNMT3B are responsible for the ICF syndrome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Assembly of several inner membrane proteins—leader peptidase (Lep), a Lep derivative (Lep-inv) that inserts with an inverted topology compared with the wild-type protein, the phage M13 procoat protein, and a procoat derivative (H1-procoat) with the hydrophobic core of the signal peptide replaced by a stretch from the first transmembrane segment in Lep—has been studied in vitro and in Escherichia coli strains that are conditional for the expression of either the 54 homologue (Ffh) or 4.5S RNA, which are the two components of the E. coli signal recognition particle (SRP), or SecE, an essential core component of the E. coli preprotein translocase. Membrane insertion has also been tested in a SecB null strain. Lep, Lep-inv, and H1-procoat require SRP for correct assembly into the inner membrane; in contrast, we find that wild-type procoat does not. Lep and, surprisingly, Lep-inv and H1-procoat fail to insert properly when SecE is depleted, whereas insertion of wild-type procoat is unaffected under these conditions. None of the proteins depend on SecB for assembly. These observations indicate that inner membrane proteins can assemble either by a mechanism in which SRP delivers the protein at the preprotein translocase or by what appears to be a direct integration into the lipid bilayer. The observed change in assembly mechanism when the hydrophobicity of the procoat signal peptide is increased demonstrates that the assembly of an inner membrane protein can be rerouted between different pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bcl-2 is the prototypical member of a large family of apoptosis-regulating proteins, consisting of blockers and promoters of cell death. The three-dimensional structure of a Bcl-2 homologue, Bcl-XL, suggests striking similarity to the pore-forming domains of diphtheria toxin and the bacterial colicins, prompting exploration of whether Bcl-2 is capable of forming pores in lipid membranes. Using chloride efflux from KCl-loaded unilamellar lipid vesicles as an assay, purified recombinant Bcl-2 protein exhibited pore-forming activity with properties similar to those of the bacterial toxins, diphtheria toxin, and colicins, i.e., dependence on low pH and acidic lipid membranes. In contrast, a mutant of Bcl-2 lacking the two core hydrophobic α-helices (helices 5 and 6), predicted to be required for membrane insertion and channel formation, produced only nonspecific effects. In planar lipid bilayers, where detection of single channels is possible, Bcl-2 formed discrete ion-conducting, cation-selective channels, whereas the Bcl-2 (Δh5, 6) mutant did not. The most frequent conductance observed (18 ± 2 pS in 0.5 M KCl at pH 7.4) is consistent with a four-helix bundle structure arising from Bcl-2 dimers. However, larger channel conductances (41 ± 2 pS and 90 ± 10 pS) also were detected with progressively lower occurrence, implying the step-wise formation of larger oligomers of Bcl-2 in membranes. These findings thus provide biophysical evidence that Bcl-2 forms channels in lipid membranes, suggesting a novel function for this antiapoptotic protein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the yeast Saccharomyces cerevisiae, meiotic recombination is initiated by transient DNA double-strand breaks (DSBs) that are repaired by interaction of the broken chromosome with its homologue. To identify a large number of DSB sites and gain insight into the control of DSB formation at both the local and the whole chromosomal levels, we have determined at high resolution the distribution of meiotic DSBs along the 340 kb of chromosome III. We have found 76 DSB regions, mostly located in intergenic promoter-containing intervals. The frequency of DSBs varies at least 50-fold from one region to another. The global distribution of DSB regions along chromosome III is nonrandom, defining large (39–105 kb) chromosomal domains, both hot and cold. The distribution of these localized DSBs indicates that they are likely to initiate most crossovers along chromosome III, but some discrepancies remain to be explained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hypermethylated in cancer (HIC-1), a new candidate tumor suppressor gene located in 17p13.3, encodes a protein with five C2H2 zinc fingers and an N-terminal broad complex, tramtrack, and bric à brac/poxviruses and zinc-finger (BTB/POZ) domain found in actin binding proteins or transcriptional regulators involved in chromatin modeling. In the human B cell lymphoma (BCL-6) and promyelocityc leukemia (PLZF) oncoproteins, this domain mediates transcriptional repression through its ability to recruit a silencing mediator of retinoid and thyroid hormone receptor (SMRT)/nuclear receptor corepressor (N-CoR)-mSin3A-histone deacetylase (HDAC) complex, a mechanism shared with numerous transcription factors. HIC-1 appears unique because it contains a 13-aa insertion acquired late in evolution, because it is not found in its avian homologue, γF1-binding protein isoform B (γFBP-B), a transcriptional repressor of the γF-crystallin gene. This insertion, located in a conserved region involved in the dimerization and scaffolding of the BTB/POZ domain, mainly affects slightly the ability of the HIC-1 and γFBP-B BTB/POZ domains to homo- and heterodimerize in vivo, as shown by mammalian two-hybrid experiments. Both the HIC-1 and γFBP-B BTB/POZ domains behave as autonomous transcriptional repression domains. However, in striking contrast with BCL-6 and PLZF, both HIC-1 and γFBP-B similarly fail to interact with members of the HDAC complexes (SMRT/N-CoR, mSin3A or HDAC-1) in vivo and in vitro. In addition, a general and specific inhibitor of HDACs, trichostatin A, did not alleviate the HIC-1- and γFBP-B-mediated transcriptional repression, as previously shown for BCL-6. Taken together, our studies show that the recruitment onto target promoters of an HDAC complex is not a general property of transcriptional repressors containing a conserved BTB/POZ domain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Identification of host factors that interact with pathogens is crucial to an understanding of infectious disease, but direct screening for host mutations to aid in this task is not feasible in mammals. The nematode Caenorhabditis elegans is a genetically tractable alternative for investigating the pathogenic bacterium Pseudomonas aeruginosa. A P. aeruginosa toxin, produced at high cell density under control of the quorum-sensing regulators LasR and RhlR, rapidly and lethally paralyzes C. elegans. Loss-of-function mutations in C. elegans egl-9, a gene required for normal egg laying, confer strong resistance to the paralysis. Thus, activation of EGL-9 or of a pathway that includes it may lead to the paralysis. The molecular identity of egl-9 was determined by transformation rescue and DNA sequencing. A mammalian homologue of EGL-9 is expressed in tissues in which exposure to P. aeruginosa could have clinical effects.