971 resultados para theoretische Teilchenphysik, Extra-Dimensionen, Flavor, Higgs, Präzisionstests
Resumo:
The purpose of this work is to know the forms of minding to the alcoholics in extra-hospitable services of mental health in Botucatu municipality. This places are: Mental Health Ambulatory and School Health Center both of the Medicine College of the Paulista State University and Mental Health Ambulatory of the NGA-11. For the development of this work was realized a bibliographic raising, presented in the introduction. Four professionals that work in this assistance were interviewed. The data that was collected in the interviews were reported with the literature of the area allowing the knowledge of the main characteristics of the minding to the alcoholist in the three services that were consulted. For example: groupal minding, minding to the family and the kind of therapeutic contract.
Resumo:
We estimate the attainable limits on the coefficients of dimension-6 operators from the analysis of Higgs boson phenomenology, in the framework of a SU L(2) × U y(1) gauge-invariant effective Lagrangian. Our results, based on the data sample already collected by the collaborations at Fermilab Tevatron, show that the coefficients of Higgs-vector boson couplings can be determined with unprecedented accuracy. Assuming that the coefficients of all blind operators are of the same magnitude, we are also able to impose mere restrictive bounds on the anomalous vector-boson triple couplings than the present limit from double gauge boson production at the Tevatron collider.
Resumo:
It was earlier shown that an SO(9,1) θα spinor variable can be constructed from RNS matter and ghost fields. θα has a bosonic world-sheet super-partner λα which plays the role of a twistor variable, satisfying λΓμ λ = ∂xμ + iθΓμ ∂θ. For Type IIA superstrings, the left-moving [θL α, λL α] and right-moving [θRα, λRα] can be combined into 32-component SO(10,1) spinors [θA, λA]. This suggests that λAΓAB 11 λB = 2λL αλRα can be interpreted as momentum in the eleventh direction. Evidence for this interpretation comes from the zero-momentum vertex operators of the Type IIA superstring and from consideration of DD-branes. As in the work of Bars, one finds an SO(10,2) structure for the Type IIA superstring and an SO(9, 1) × SO(2, 1) structure for the Type IIB superstring. © 1997 Elsevier Science B.V.
Resumo:
We derive bounds on Higgs and gauge-boson anomalous interactions using the LEP2 data on the production of three photons and photon pairs in association with hadrons. In the framework of SU(2)L ⊗ U(1)Y effective Lagrangians, we examine all dimension-six operators that lead to anomalous Higgs interactions involving γ and Z. The search for Higgs boson decaying to γγ pairs allow us to obtain constrains on these anomalous couplings that are comparable with the ones originating from the analysis of pp̄ collisions at the Tevatron. Our results also show that if the coefficients of all blind operators are assumed to have the same magnitude, the indirect constraints on the anomalous couplings obtained from this analysis, for Higgs masses MH ≲ 140 GeV, are more restrictive than the ones coming from the W+W- production. © 1998 Elsevier Science B.V. All rights reserved.
Resumo:
We derive bounds on Higgs and gauge-boson anomalous interactions using the CDF data for the process pp̄ → γγγ + X. We use a linearly realized SU L(2) X U Y(1) invariant effective Lagrangian to describe the bosonic sector of the Standard Model, keeping the fermionic couplings unchanged. All dimension-six operators that lead to anomalous Higgs interactions involving γ and Z are considered. We also show the sensitivity that can be achieved for these couplings at Fermilab Tevatron upgrades. © 1998 Published by Elsevier Science B.V. All rights reserved.
Resumo:
We examine the potentiality of both CERN LEP and Fermilab Tevatron colliders to establish bounds on new couplings involving the bosonic sector of the standard model. We pay particular attention to the anomalous Higgs interactions with γ, W±, and Z0. A combined exclusion plot for the coefficients of different anomalous operators is presented. The sensitivity that can be achieved at the Next Linear Collider and at the upgraded Tevatron is briefly discussed. ©1999 The American Physical Society.
Resumo:
In certain mild extensions of the standard model, spin-independent long range forces can arise by exchange of two very light pseudoscalar spin-0 bosons. In particular, we have in mind models in which these bosons do not have direct tree level couplings to ordinary fermions. Using the dispersion theoretical method, we find a 1/r3 behavior of the potential for the exchange of very light pseudoscalars and a 1/r7 dependence if the pseudoscalars are true massless Goldstone bosons. ©1999 The American Physical Society.
Resumo:
Flavor changing (FC) neutrino-matter interactions can account for the zenith-angle-dependent deficit of atmospheric neutrinos observed in the SuperKamiokande experiment, without directly invoking either neutrino mass or mixing. We find that FC ν μ-matter interactions provide a good fit to the observed zenith angle distributions, comparable in quality to the neutrino oscillation hypothesis. The required FC interactions arise naturally in many attractive extensions of the standard model. © 1999 The American Physical Society.
Resumo:
We show that the Higgs resonance can be amplified in a 3-3-1 model with a multi-Higgs-boson leptophilic scalar sector. This would allow the observation of the Higgs particle in muon colliders even for Higgs boson masses considerably higher than the ones expected to be seen in the electroweak standard model framework. ©1999 The American Physical Society.
Resumo:
We study the pair production of neutral Higgs bosons through gluon fusion at hadron colliders in the framework of the minimal supersymmetric standard model. We present analytical expressions for the relevant amplitudes, including both quark and squark loop contributions, and allowing for mixing between the superpartners of left- and right-handed quarks. Squark loop contributions can increase the cross section for the production of two CP-even Higgs bosons by more than two orders of magnitude, if the relevant trilinear soft breaking parameter is large and the mass of the lighter squark eigenstate is not too far above its current lower bound. In the region of large tan β, neutral Higgs boson pair production might even be observable in the 4b final state during the next run of the Fermilab Tevatron collider. ©1999 The American Physical Society.
Resumo:
The pseudoscalar mesons η(547), η′(958) and η″(1410) are studied in the gluonium-quarkonium mixing framework. The SU(3)-flavor symmetry breaking and annihilation effects are considered. Estimates of the glueball mass and of the ms/mu ratio are provided. The system η(1295) and η(1490) is also considered in a mixing scheme.
Resumo:
We present a model of fermion masses based on a minimal, non-Abelian discrete symmetry that reproduces the Yukawa matrices usually associated with U(2) theories of flavor. Mass and mixing angle relations that follow from the simple form of the quark and charged lepton Yukawa textures are therefore common to both theories. We show that the differing representation structure of our horizontal symmetry allows for new solutions to the solar and atmospheric neutrino problems that do not involve modification of the original charged fermion Yukawa textures, or the introduction of sterile neutrinos. (C) 2000 Elsevier Science B.V.
Resumo:
We analyze the potentiality of hadron colliders to search for large extra dimensions via the production of photon pairs. The virtual exchange of Kaluza-Klein gravitons can significantly enhance this process provided the quantum gravity scale (MS) is in the TeV range. We studied in detail the subprocesses qq̄→γγ and gg → γγ taking into account the complete standard model and graviton contributions as well as the unitarity constraints. We show that the Fermilab Tevatron run II will be able to probe MS up to 1.5-1.9 TeV at 2σ level, while the CERN LHC can extend this search to 5.3-6.7 TeV, depending on the number of extra dimensions. ©2000 The American Physical Society.
Resumo:
We study the potential of hadron colliders in the search for the pair production of neutral Higgs bosons in the framework of the minimal supersymmetric standard model. We perform a detailed signal and background analysis, working out efficient kinematical cuts for the extraction of the signal. The important role of squark loop contributions to the signal is re-emphasized. If the signal is sufficiently enhanced by these contributions, it could even be observable at the next run of the upgraded Tevatron collider in the near future. At the LHC the pair production of light and heavy Higgs bosons might be detectable simultaneously.
Resumo:
We analyze the potential of the next generation of e+e- linear colliders to search for large extra dimensions via the production of fermion pairs in association with Kaluza-Klein gravitons (G), i.e., e+e- →ff̃G. This process leads to a final state exhibiting a significant amount of missing energy in addition to acoplanar lepton or jet pairs. We study in detail this reaction using the full tree level contributions due to the graviton emission and the standard model backgrounds. After choosing the cuts to enhance the signal, we show that a linear collider with a center-of-mass energy of 500 GeV will be able to probe quantum gravity scales from 0.96 (0.86) up to 4.1 (3.3) TeV at a 2 (5)σ level, depending on the number of extra dimensions. ©2001 The American Physical Society.