795 resultados para the Chinese Loess Plateau


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radiocarbon measurements on core tops from the Ontong-Java plateau confirm a previous finding by Berger and Killingley [1982] that at any given water depth, cores taken on the equator have higher accumulation rates and younger core top ages than their off-equator counterparts. Further, these new results fortify the conclusion by Broecker et al. [1991] that the increase in core top radiocarbon age with water depth rules out homogeneous dissolution within the pore waters as the dominant mechanism. Either most of the dissolution must occur prior to burial or it must occur during the first pass through the respiration-CO2-rich upper pore waters after which the calcite grains become armored against further dissolution. A puzzling aspect of this new data set is that despite the sizable difference in accumulation rate, the extent of dissolution as measured by either the CaCO3 content or the ratio of CaCO3 in the >150-µm size fraction to that in the < 63-µm fraction is no different off than on the equator. In order to reconcile the results of this study with those obtained by Hales and Emerson [1996] using in situ electrodes, it is necessary to call upon calcite armoring.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Between 1086.6 and 1229.4 m below seafloor at Site 642 on the Outer Vøring Plateau, a series of intermediate volcanic extrusive flow units and volcaniclastic sediments was sampled. A mixed sequence of dacitic subaerial flows, andesitic basalts, intermediate volcaniclastics, subordinate mid-ocean ridge basalt, (MORB) lithologies, and intrusives was recovered, in sharp contrast to the more uniform tholeiitic T-type MORB units of the overlying upper series. This lower series of volcanics is composed of three chemically distinct groups, (B, A2, A1), rather than the two previously identified. Flows of the dacitic group (B) have trace-element and initial Sr isotope signatures which indicate that their source magma derived from the partial melting of a component of continental material in a magma chamber at a relatively high level in the crust. The relative proportions of crustal components in this complex melt are not known precisely. The most basic group (A2) probably represents a mixture of this material with MORB-type tholeiitic melt. A third group (A1), of which there was only one representative flow recovered, is chemically intermediate between the two groups above, and may suggest a repetition of, or a transition phase in, the mixing processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kaolinite, goethite, minor hematite, and gibbsite were found in fluvial upper Lower Cretaceous basal sediment from the Southern Kerguelen Plateau, Sites 748 and 750, 55°S latitude. This mineral assemblage, derived from the weathering of basalt, indicates near-tropical weathering conditions with high orographic rainfall, at least 100 cm per year. The climate deteriorated by the Turonian or Coniacian, as indicated by the decline in kaolinite content of this sediment. The Upper Cretaceous sediment at Site 748 consists of 200 m of millimeter-laminated, sparsely fossiliferous, wood-bearing glauconitic siltstone and clay stone with siderite concretions deposited on a shelf below wave base. Some graded and cross beds indicate that storms swept over the shelf and reworked the sediment. Overlying this unit is 300 m of intermittently partly silicified, bryozoan-inoceramid-echinoderm-rich glauconitic packstones, grainstones, and wackestones. The dominant clay mineral in both units is identical to the mineral composition of the glauconite pellets: randomly interstratified smectite-mica. The clay fraction has a higher percent of expandable layers than the mineral of the glauconite pellets, and the clay of the underlying subunit has a higher percentage of expandable layers than the clay of the carbonate subunit. Potassium levels mirror these mineral variations, with higher K levels in minerals that have a lower percentage of expandable layers. The decrease in expandability of the mineral in the upper subunit is attributed to diagenesis, the result of higher porosity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Volcanic signatures in ice-core records provide an excellent means to date the cores and obtain information about accumulation rates. From several ice cores it is thus possible to extract a spatio-temporal accumulation pattern. We show records of electrical conductivity and sulfur from 13 firn cores from the Norwegian-USA scientific traverse during the International Polar Year 2007-2009 (IPY) through East Antarctica. Major volcanic eruptions are identified and used to assess century-scale accumulation changes. The largest changes seem to occur in the most recent decades with accumulation over the period 1963-2007/08 being up to 25% different from the long-term record. There is no clear overall trend, some sites show an increase in accumulation over the period 1963 to present while others show a decrease. Almost all of the sites above 3200 m above sea level (asl) suggest a decrease. These sites also show a significantly lower accumulation value than large-scale assessments both for the period 1963 to present and for the long-term mean at the respective drill sites. The spatial accumulation distribution is influenced mainly by elevation and distance to the ocean (continentality), as expected. Ground-penetrating radar data around the drill sites show a spatial variability within 10-20% over several tens of kilometers, indicating that our drill sites are well representative for the area around them. Our results are important for large-scale assessments of Antarctic mass balance and model validation.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results are examined of determinations of chlorophyll in seawater suspension by fluorescent and spectrophometric methods in the Southwest Indian Ocean near the African coast and in the Seychelles-Mauritius Plateau area in July-November 1977. During the study period near the African coast, the most productive regions, where the weighted average particulate chlorophyll concentration in the photic zone was greater than 0.5 µg/l, were off the Mozambique coast (near the mouth of the Zambezi River and in Delagoa Bay) and also off the coast of Tanzania, near the the Pemba and Zanzibar Islands. The most favorable conditions for growth of phytoplankton, i.e., a combination of distinct water stratification with intense upwelling, were observed in the equatorial divergence zone in the region of the Seychelles and Amirante Islands, where chlorophyll concentration in the layer of the maximum was as high as 3.4 µg/l. This region can be considered as one of the most productive regions of the Indian Ocean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paleogene stable oxygen and carbon isotopes were measured in formainifera from ODP Sites 689 and 690 at Maud Rise in the Atlantic Ocean sector of the Southern Ocean, and from Sites 738, 744, 748 and 749 at the southern Kerguelen Plateau in the Indian Ocean sector. These data were compared with sedimentological data from the same sample set. Both benthic and planktic d18O values document a cooling trend beginning around 49.5 Ma at all sites. During the late middle Eocene planktic d18O values indicate a steepening latitudinal temperature gradient from 14°C at the northern sites towards 10°C at the southernmost sites. Terrigeneous sand grains of probably ice rafted origin and clay mineral assemblages point to the existence of a limited East Antarctic ice cap with some glaciers reaching sea level as early as middle Eocene time around 45.5 Ma. Between 45 and 40 Ma, average paleotemperatures were between 5° and 7°C in deep and intermediate water masses, while near-surface water masses ranged between 6° and 10°C. During the late Eocene, between 40 and 36 Ma, average temperatures further decreased to 4°-5°C in the deep and intermediate water masses and to 5°-8°C near the sea surface. Abruptly increasing d18O values at approximately 35.9 Ma exactly correlate with a sharp pulse in the deposition of ice-rafted material on the Kerguelen Plateau, a dramatic change in clay mineral composition, and an altered Southern Ocean circulation indicated by a differentiation of benthic d13C values between sites, increasing opal concentrations and decreasing carbonate contents. For planktic and benthic foraminifera this d18O increase ranges between 1.0 and 1.3 per mil, and between 0.9 and 1.4 per mil, respectively. We favour a hypothesis that explains most of the d18O shift at 35.9 Ma with a buildup of a continental East Antarctic ice sheet. Consequently, relatively warm Oligocene Antarctic surface water temperatures probably are explained by a temperate, wet-based nature of the ice sheet. This would also aid in the fast build-up of an ice sheet by enhancing the moisture transport on to the continent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infilled fissures are described from the interface between two loess deposits on Banks Peninsula, South Island, New Zealand. Both loesses differ from the other loesses by having a solifluction deposit at their base consisting of angular basalt fragments of the same angularity as fresh frost shattered basalt mixed with the loess. Typically, the fissures are narrow and up to 160 cm deep while the infilling of the overlying loess shows no obvious structure. They occur mainly at higher elevations on south (poleward) facing slopes, and the host loess forms a fragipan of high density. They are most readily explained as being seasonal frost fissures or more probably ice-wedge casts, which would have required either permafrost or deep seasonal frost for their formation. If permafrost had existed, this would imply a cooling of the mean annual temperatures by at least 16 to 18°C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a Rare Earth Elements (REE) record at decadal resolution determined in the EPICA ice core drilled in Dronning Maud Land (EDML) in the Atlantic Sector of the East Antarctic Plateau, covering the transition from the last glacial age (LGA) to the early Holocene (26 600-7500 yr BP). Additionally, samples from potential source areas (PSAs) for Antarctic dust were analysed for their REE characteristics. The dust provenance is discussed by comparing the REE fingerprints in the ice core and the PSAs samples. We find a shift in REE composition at 15 200 yr BP in the ice core samples. Before 15 200 yr BP, the dust composition is very uniform and its provenance was likely to be dominated by a South American source. After 15 200 yr BP, multiple sources such as Australia and New Zealand become relatively more important, albeit South America is possibly still an important dust supplier. A similar change in the dust characteristics was observed in the EPICA Dome C ice core at around ~15 000 yr BP. A return to more glacial dust characteristics between ~8300 and ~7500 yr BP, as observed in the EPICA Dome C core, could not be observed in the EDML core. Consequently, the dust provenance at the two sites must have been different at that time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on sedimentological, mineralogical, geochemical, and micropaleontological data on comprehensively investigated Core ASV16-1372, Late Pleistocene - Holocene sedimentation history is reconstructed for the Voring marginal plateau (continental margin of the Norwegian Sea). An age model constructed is based on correlation with several adjacent cores, for which AMS radiocarbon datings are available. Lithostratigraphic correlation made it possible to compare stratigraphic division of Core ASV16-1372 with other cores sampled on the Voring Plateau and the shelf and continental slope off Central Norway. It is concluded that compositional and structural features of bottom sediments are correlated with paleoclimatic and paleoceanographic changes, variations in provenances, as well as agents and pathways of sedimentary material transport.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Subtropical Front (STF) marking the northern boundary of the Southern Ocean has a steep gradient in sea surface temperature (SST) of approximately 4°C over 0.5° of latitude. Presently, in the region south of Tasmania, the STF lies nominally at 47°S in the summer and 45°S in the winter. We present here SST reconstructions in a latitudinal transect of cores across the South Tasman Rise, southeast of Australia, during the late Quaternary. SST reconstructions are based on two paleotemperature proxies, alkenones and faunal assemblages, which are used to assess past changes in SST in spring and summer. The north-south alignment in core locations allows reconstruction of movement of the STF over the last 100 ka. Surface water temperatures during the last glaciation in this region were ~4°C colder than today. Additional temperature changes greater in magnitude than 4°C seen in individual cores can be attributed to changes in the water mass overlying the core site caused by the movement of the front across that location. During the penultimate interglacial, SST was ~2°C warmer and the STF was largely positioned south of 47°S. Movement of the STF to the north occurred during cool climate periods such as the last marine isotope stages 3 and 4. In the last glaciation, the front was at its farthest north position, becoming pinned against the Tasmanian landmass. It moved south by 4° latitude to 47°S in summer during the deglaciation but remained north of 45°S in spring throughout the early deglaciation. After 11 ka B.P. inferred invigoration of the East Australia Current appears to have pushed the STF seasonally south of the East Tasman Plateau, until after 6 ka B.P. when it achieved its present configuration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we present the first radiometric age data and a comprehensive geochemical data set (including major and trace element and Sr-Nd-Pb-Hf isotope ratios) for samples from the Hikurangi Plateau basement and seamounts on and adjacent to the plateau obtained during the R/V Sonne 168 cruise, in addition to age and geochemical data from DSDP Site 317 on the Manihiki Plateau. The 40Ar/39Ar age and geochemical data show that the Hikurangi basement lavas (118-96 Ma) have surprisingly similar major and trace element and isotopic characteristics to the Ontong Java Plateau lavas (ca. 120 and 90 Ma), primarily the Kwaimbaita-type composition, whereas the Manihiki DSDP Site 317 lavas (117 Ma) have similar compositions to the Singgalo lavas on the Ontong Java Plateau. Alkalic, incompatible-element-enriched seamount lavas (99-87 Ma and 67 Ma) on the Hikurangi Plateau and adjacent to it (Kiore Seamount), however, were derived from a distinct high time-integrated U/Pb (HIMU)-type mantle source. The seamount lavas are similar in composition to similar-aged alkalic volcanism on New Zealand, indicating a second wide-spread event from a distinct source beginning ca. 20 Ma after the plateau-forming event. Tholeiitic lavas from two Osbourn seamounts on the abyssal plain adjacent to the northeast Hikurangi Plateau margin have extremely depleted incompatible element compositions, but incompatible element characteristics similar to the Hikurangi and Ontong Java Plateau lavas and enriched isotopic compositions intermediate between normal mid-ocean-ridge basalt (N-MORB) and the plateau basement. These younger (~52 Ma) seamounts may have formed through remelting of mafic cumulate rocks associated with the plateau formation. The similarity in age and geochemistry of the Hikurangi, Ontong Java and Manihiki Plateaus suggest derivation from a common mantle source. We propose that the Greater Ontong Java Event, during which ?1% of the Earth's surface was covered with volcanism, resulted from a thermo-chemical superplume/dome that stalled at the transition zone, similar to but larger than the structure imaged presently beneath the South Pacific superswell. The later alkalic volcanism on the Hikurangi Plateau and the Zealandia micro-continent may have been part of a second large-scale volcanic event that may have also triggered the final breakup stage of Gondwana, which resulted in the separation of Zealandia fragments from West Antarctica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vast areas on the Tibetan Plateau are covered by alpine sedge mats consisting of different species of the genus Kobresia. These mats have topsoil horizons rich in rhizogenic organic matter which creates turfs. As the turfs have recently been affected by a complex destruction process, knowledge concerning their soil properties, age and pedogenesis are needed. In the core area of Kobresia pygmaea mats around Nagqu (central Tibetan Plateau, ca. 4500 m a.s.l.), four profiles were subjected to pedological, paleobotanical and geochronological analyses concentrating on soil properties, phytogenic composition and dating of the turf. The turf of both dry K. pygmaea sites and wet Kobresia schoenoides sites is characterised by an enrichment of living (dominant portion) and dead root biomass. In terms of humus forms, K. pygmaea turfs can be classified as Rhizomulls mainly developed from Cambisols. Wet-site K. schoenoides turfs, however, can be classified as Rhizo-Hydromors developed from Histic Gleysols. At the dry sites studied, the turnover of soil organic matter is controlled by a non-permafrost cold thermal regime. Below-ground remains from sedges are the most frequent macroremains in the turf. Only a few pollen types of vascular plants occur, predominantly originating from sedges and grasses. Large amounts of microscopic charcoal (indeterminate) are present. Macroremains and pollen extracted from the turfs predominantly have negative AMS 14C ages, giving evidence of a modern turf genesis. Bulk-soil datings from the lowermost part of the turfs have a Late Holocene age comprising the last ca. 2000 years. The development of K. pygmaea turfs was most probably caused by an anthropo(zoo)-genetically initiated growth of sedge mats replacing former grass-dominated vegetation ('steppe'). Thus the turfs result from the transformation of pre-existing topsoils comprising a secondary penetration and accumulation of roots. K. schoenoides turfs, however, are characterised by a combined process of peat formation and penetration/accumulation of roots probably representing a (quasi) natural wetland vegetation.