896 resultados para tau Proteins
Resumo:
First-order time remaining until a moving observer will pass an environmental element is optically specified in two different ways. The specification provided by global tau (based on the pattern of change of angular bearing) requires that the element is stationary and that the direction of motion is accurately detected, whereas the specification provided by composite tau (based on the patterns of change of optical size and optical distance) does not require either of these. We obtained converging evidence,for our hypothesis. that observers are sensitive to composite tau in four experiments involving, relative judgments of, time to, passage with forced-choice methodology. Discrimination performance was enhanced in the presence of a local expansion component, while being unaffected when the detection of the direction of heading was impaired. Observers relied on the information carried in composite tau rather than on the information carried in its constituent components. Finally, performance was similar under conditions of observer motion and conditions of object motion. Because composite tau specifies first-order time remaining for a large number of situations, the different ways in which it may be detected are discussed.
Resumo:
The main success of my thesis has been to establish the mechanism by which antifreeze proteins (AFPs) bind irreversibly to ice crystals, and hence prevent their growth. AFPs organize ice-like water on their ice-binding site, which then merges and freezes with the quasi-liquid layer of ice. This was revealed from studying the exceptionally large (ca. 1.5-MDa) Ca 2+-dependent AFP from the Antarctic bacterium Marinomonas primoryensis (MpAFP). The 34-kDa antifreeze- active region of MpAFP was predicted to fold as a novel Ca 2+-binding β-helix. Site-directed mutagenesis confirmed the model and demonstrated that its ice-binding site (IBS) consisted of solvent-exposed Thr and Asx parallel arrays on the Ca 2+-binding turns. The X-ray crystal structure of the antifreeze region was solved to a resolution of 1.7 Å. Two of the four molecules within the unit cell of the crystal had portions of their IBSs freely exposed to solvent. Identical clathrate-like cages of water molecules were present on each IBS. These waters were organized by the hydrophobic effect and anchored to the protein via hydrogen bonds. They matched the spacing of water molecules in an ice lattice, demonstrating that anchored clathrate waters bind AFPs to ice. This mechanism was extended to other AFPs including the globular type III AFP from fishes. Site-directed mutagenesis and a modified ice-etching technique demonstrated this protein uses a compound ice-binding site, comprised of two flat and relatively hydrophobic surfaces, to bind at least two planes of ice. Reinvestigation of several crystal structures of type III AFP identified anchored clathrate waters on the solvent-exposed portion of its compound IBS that matched the spacing of waters on the primary prism plane of ice. Ice nucleation proteins (INPs), which can raise the temperature at which ice forms in solution to just slightly below 0oC, have the opposite effect to AFPs. A novel dimeric β-helical model was proposed for the INP produced by the bacterium Pseudomonas borealis. Molecular dynamics simulations showed that INPs are also capable of ordering water molecules into an ice- like lattice. However, their multimerization brings together sufficient ordered waters to form an ice nucleus and initiate freezing.
Resumo:
The quantitative assessment of apoptotic index (AI) and mitotic index (MI) and the immunoreactivity of p53, bcl-2, p21, and mdm2 were examined in tumour and adjacent normal tissue samples from 30 patients with colonic and 22 with rectal adenocarcinoma. Individual features and combined profiles were correlated with clinicopathological parameters and patient survival data to assess their prognostic value. Increased AI was significantly associated with increased bcl-2 expression (p
Resumo:
Calmodulin is a calcium ion-sensing signalling protein found in eukaryotics. Two calmodulin-like gene sequences were identified in an EST library from adult liver flukes. One codes for a protein (FhCaM1) homologous to mammalian calmodulins (98% identity), whereas the other protein (FhCaM2) has only 41% identity. These genes were cloned into expression vectors and the recombinant proteins were expressed in Escherichia coli. Gel shift assays showed that both proteins bind to calcium, magnesium and zinc ions. Homology models have been built for both proteins. As expected, FhCaM1 has a highly similar structure to other calmodulins. Although FhCaM2 has a similar fold, its surface charge is higher than FhCaM1. One of the potential metal ion-binding sites has lower metal-ion co-ordination capability, while another has an adjacent lysine residue, both of which may decrease the metal-binding affinity. These differences may reflect a specialised role for FhCaM2 in the liver fluke.