917 resultados para system parameter identification


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper proposes a method of performing system identification of a linear system in the presence of bounded disturbances. The disturbances may be piecewise parabolic or periodic functions. The method is demonstrated effectively on two example systems with a range of disturbances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The aim of this study was to evaluate stimulant medication response following a single dose of methylphenidate (MPH) in children and young people with hyperkinetic disorder using infrared motion analysis combined with a continuous performance task (QbTest system) as objective measures. The hypothesis was put forward that a moderate testdose of stimulant medication could determine a robust treatment response, partial response and non-response in relation to activity, attention and impulse control measures. Methods: The study included 44 children and young people between the ages of 7-18 years with a diagnosis of hyperkinetic disorder (F90 & F90.1). A single dose-protocol incorporated the time course effects of both immediate release MPH and extended release MPH (Concerta XL, Equasym XL) to determine comparable peak efficacy periods post intake. Results: A robust treatment response with objective measures reverting to the population mean was found in 37 participants (84%). Three participants (7%) demonstrated a partial response to MPH and four participants (9%) were determined as non-responders due to deteriorating activity measures together with no improvements in attention and impulse control measures. Conclusion: Objective measures provide early into prescribing the opportunity to measure treatment response and monitor adverse reactions to stimulant medication. Most treatment responders demonstrated an effective response to MPH on a moderate testdose facilitating a swift and more optimal titration process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By using a deterministic approach, an exact form for the synchronous detected video signal under a ghosted condition is presented. Information regarding the phase quadrature-induced ghost component derived from the quadrature forming nature of the vestigial sideband (VSB) filter is obtained by crosscorrelating the detected video with the ghost cancel reference (GCR) signal. As a result, the minimum number of taps required to correctly remove all the ghost components is subsequently presented. The results are applied to both National Television System Committee (NTSC) and phase alternate line (PAL) television.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For individuals with upper-extremity motor disabilities, the head-stick is a simple and intuitive means of performing manipulations because it provides direct proprioceptive information to the user. Through practice and use of inherent proprioceptive cues, users may become quite adept at using the head-stick for a number of different tasks. The traditional head-stick is limited, however, to the user's achievable range of head motion and force generation, which may be insufficient for many tasks. The authors describe an interface to a robot system which emulates the proprioceptive qualities of a traditional head-stick while also allowing for augmented end-effector ranges of force and motion. The design and implementation of the system in terms of coordinate transforms, bilateral telemanipulator architecture, safety systems, and system identification of the master is described, in addition to preliminary evaluation results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A nonlinear regression structure comprising a wavelet network and a linear term is proposed for system identification. The theoretical foundation of the approach is laid by proving that radial wavelets are orthogonal to linear functions. A constructive procedure for building such models is described and the approach is tested with experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper shows that a wavelet network and a linear term can be advantageously combined for the purpose of non linear system identification. The theoretical foundation of this approach is laid by proving that radial wavelets are orthogonal to linear functions. A constructive procedure for building such nonlinear regression structures, termed linear-wavelet models, is described. For illustration, sim ulation data are used to identify a model for a two-link robotic manipulator. The results show that the introduction of wavelets does improve the prediction ability of a linear model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on integrated system optimisation and parameter estimation a method is described for on-line steady state optimisation which compensates for model-plant mismatch and solves a non-linear optimisation problem by iterating on a linear - quadratic representation. The method requires real process derivatives which are estimated using a dynamic identification technique. The utility of the method is demonstrated using a simulation of the Tennessee Eastman benchmark chemical process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the implementation, using a microprocessor, of a self-tuning control algorithm on a heating system. The algorithm is based on recursive least squares parameter estimation with a state-space, pole placement design criterion and shows how the controller behaves when applied to an actual system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Implementations of incremental variational data assimilation require the iterative minimization of a series of linear least-squares cost functions. The accuracy and speed with which these linear minimization problems can be solved is determined by the condition number of the Hessian of the problem. In this study, we examine how different components of the assimilation system influence this condition number. Theoretical bounds on the condition number for a single parameter system are presented and used to predict how the condition number is affected by the observation distribution and accuracy and by the specified lengthscales in the background error covariance matrix. The theoretical results are verified in the Met Office variational data assimilation system, using both pseudo-observations and real data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The misuse of Personal Protective Equipment results in health risk among smallholders in developing countries, and education is often proposed to promote safer practices. However, evidence point to limited effects of education. This paper presents a System Dynamics model which allows the identification of risk-minimizing policies for behavioural change. The model is based on the IAC framework and survey data. It represents farmers' decision-making from an agent-oriented standpoint. The most successful intervention strategy was the one which intervened in the long term, targeted key stocks in the systems and was diversified. However, the results suggest that, under these conditions, no policy is able to trigger a self sustaining behavioural change. Two implementation approaches were suggested by experts. One, based on constant social control, corresponds to a change of the current model's parameters. The other, based on participation, would lead farmers to new thinking, i.e. changes in their decision-making structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data assimilation is predominantly used for state estimation; combining observational data with model predictions to produce an updated model state that most accurately approximates the true system state whilst keeping the model parameters fixed. This updated model state is then used to initiate the next model forecast. Even with perfect initial data, inaccurate model parameters will lead to the growth of prediction errors. To generate reliable forecasts we need good estimates of both the current system state and the model parameters. This paper presents research into data assimilation methods for morphodynamic model state and parameter estimation. First, we focus on state estimation and describe implementation of a three dimensional variational(3D-Var) data assimilation scheme in a simple 2D morphodynamic model of Morecambe Bay, UK. The assimilation of observations of bathymetry derived from SAR satellite imagery and a ship-borne survey is shown to significantly improve the predictive capability of the model over a 2 year run. Here, the model parameters are set by manual calibration; this is laborious and is found to produce different parameter values depending on the type and coverage of the validation dataset. The second part of this paper considers the problem of model parameter estimation in more detail. We explain how, by employing the technique of state augmentation, it is possible to use data assimilation to estimate uncertain model parameters concurrently with the model state. This approach removes inefficiencies associated with manual calibration and enables more effective use of observational data. We outline the development of a novel hybrid sequential 3D-Var data assimilation algorithm for joint state-parameter estimation and demonstrate its efficacy using an idealised 1D sediment transport model. The results of this study are extremely positive and suggest that there is great potential for the use of data assimilation-based state-parameter estimation in coastal morphodynamic modelling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop a complex-valued (CV) B-spline neural network approach for efficient identification and inversion of CV Wiener systems. The CV nonlinear static function in the Wiener system is represented using the tensor product of two univariate B-spline neural networks. With the aid of a least squares parameter initialisation, the Gauss-Newton algorithm effectively estimates the model parameters that include the CV linear dynamic model coefficients and B-spline neural network weights. The identification algorithm naturally incorporates the efficient De Boor algorithm with both the B-spline curve and first order derivative recursions. An accurate inverse of the CV Wiener system is then obtained, in which the inverse of the CV nonlinear static function of the Wiener system is calculated efficiently using the Gaussian-Newton algorithm based on the estimated B-spline neural network model, with the aid of the De Boor recursions. The effectiveness of our approach for identification and inversion of CV Wiener systems is demonstrated using the application of digital predistorter design for high power amplifiers with memory

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A system identification algorithm is introduced for Hammerstein systems that are modelled using a non-uniform rational B-spline (NURB) neural network. The proposed algorithm consists of two successive stages. First the shaping parameters in NURB network are estimated using a particle swarm optimization (PSO) procedure. Then the remaining parameters are estimated by the method of the singular value decomposition (SVD). Numerical examples are utilized to demonstrate the efficacy of the proposed approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we propose an efficient two-level model identification method for a large class of linear-in-the-parameters models from the observational data. A new elastic net orthogonal forward regression (ENOFR) algorithm is employed at the lower level to carry out simultaneous model selection and elastic net parameter estimation. The two regularization parameters in the elastic net are optimized using a particle swarm optimization (PSO) algorithm at the upper level by minimizing the leave one out (LOO) mean square error (LOOMSE). Illustrative examples are included to demonstrate the effectiveness of the new approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces an architecture for identifying and modelling in real-time at a copper mine using new technologies as M2M and cloud computing with a server in the cloud and an Android client inside the mine. The proposed design brings up pervasive mining, a system with wider coverage, higher communication efficiency, better fault-tolerance, and anytime anywhere availability. This solution was designed for a plant inside the mine which cannot tolerate interruption and for which their identification in situ, in real time, is an essential part of the system to control aspects such as instability by adjusting their corresponding parameters without stopping the process.