944 resultados para supernovae: individual: SN 2009ip SN 2000ch
Resumo:
Recientemente, debido al alto consumo energético, la investigación de nuevos materiales semiconductores de bajo costo y no tóxicos para la fabricación de dispositivos fotovoltaicos ha sido de gran interés. En el presente proyecto se sintetizaron y caracterizaron películas delgadas de Cu2SnS3 y Cu4SnS4, obtenidas mediante la combinación de las técnicas de depósito por baño químico y evaporación térmica. Se obtuvieron películas delgadas de SnS de estructura ortorrómbica de 350 nm de espesor mediante baño químico como películas precursoras. Se depositaron capas de Cu (30, 50, 75 y 150nm) mediante evaporación térmica. Calentando las muestras de SnS con capas de Cu evaporado en presencia de azufre elemental (sulfurización) a 400 oC (10 oC/min) se promovió la formación de las fases ternarias Cu2SnS3 y Cu4SnS4. Los resultados de difracción de rayos-X indicaron que para el caso de las muestras con poca cantidad de Cu (30 nm), la fase binaria secundaria (SnS2) se forma junto con la fase ternaria Cu2SnS3-cúbica. Con 75nm de Cu (400 oC) solamente la fase ternaria Cu2SnS3-tetragonal está presente, y con 150 nm de Cu (400 ̊C) la fase secundaria se forma (Cu7S5). Al incrementar la temperatura de sulfurización a 450 ̊C para la condición de 150 nm de Cu, se obtiene la formación de la fase ternaria Cu4SnS4-ortorrómbica. Las propiedades ópticas para la fase Cu2SnS3-tetragonal con un espesor de 480 nm indicaron que esta presenta una transición óptica directa con brecha de energía en el rango 0.96 eV. La fase Cu4SnS4-ortorrómbica con un espesor de 760 nm, presentó una transición óptica indirecta con una brecha de energía alrededor de 0.5 eV. Además, ambas fases presentaron coeficientes de absorción óptica superiores a 104 cm-1 en el rango visible (1.6 - 3.3 eV). Las muestras no presentaron fotorrespuesta. La fase Cu2SnS3-tetragonal, mostró una conductividad eléctrica a temperatura ambiente de 17 Ω-1 cm-1 (tipo-p), con una movilidad de huecos de 3.62 cm2/V s y una concentración de huecos de 1019 cm-3, mientras que para la fase Cu4SnS4-ortorrómbico, la conductividad fue de 11 Ω-1 cm-1 (tipo-p), con una movilidad y concentración de huecos de 3.75 cm2/V s y 1019 cm-3, respectivamente.
Resumo:
Carbon-supported Pt–Sn catalysts commonly contain Pt–Sn alloy and/or Pt–Sn bimetallic systems (Sn oxides). Nevertheless, the origin of the promotion effect due to the presence of Sn in the Pt–Sn/C catalyst towards ethanol oxidation in acid media is still under debate and some contradictions. Herein, a series of Ptx–Sny/C catalysts with different atomic ratios are synthesized by a deposition process using formic acid as the reducing agent. Catalysts structure and chemical compositions are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) and their relationship with catalytic behavior towards ethanol electro-oxidation was established. Geometric structural changes are producing by highest Sn content (Pt1–Sn1/C) promoted the interaction of Pt and Sn forming a solid solution of Pt–Sn alloy phase, whereas, the intermediate and lowest Sn content (Pt2–Sn1/C and Pt3–Sn1/C, respectively) promoted the electronic structure modifications of Pt by Sn addition without the formation of a solid solution. The amount of Sn added affects the physical and chemical characteristics of the bimetallic catalysts as well as reducing the amount of Pt in the catalyst composition and maintaining the electrocatalytic activities at the anode. However, the influence of the Sn oxidation state in Pt–Sn/C catalysts surfaces and the alloy formation between Pt and Sn as well as with the atomic ratio on their catalytic activity towards ethanol oxidation appears minimal. Similar methodologies applied for synthesis of Ptx–Sny/C catalysts with a small change show differences with the results obtained, thus highlighting the importance of the conditions of the preparation method.
Resumo:
The development and optimization of electrocatalysts for application in fuel cell systems have been the focus of a variety of studies where core–shell structures have been considered as a promising alternative among the materials studied. We synthesized core–shell nanoparticles of Sn x @Pt y and Rh x @Pt y (Sn@Pt, Sn@Pt2, Sn@Pt3, Rh@Pt, Rh@Pt2, and Rh@Pt3) through a reduction methodology using sodium borohydride. These nanoparticles were electrochemically characterized by cyclic voltammetry and further analyzed by cyclic voltammetry studying their catalytic activity toward glycerol electro-oxidation; chronoamperometry and potentiostatic polarization experiments were also carried out. The physical characterization was carried out by X-ray diffraction, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. The onset potential for glycerol oxidation was shifted in 130 and 120 mV on the Sn@Pt3/C and Rh@Pt3/C catalysts, respectively, compared to commercial Pt/C, while the stationary pseudo-current density, taken at 600 mV, increased 2-fold and 5-fold for these catalysts related to Pt/C, respectively. Thus, the catalysts synthesized by the developed methodology have enhanced catalytic activity toward the electro-oxidation of glycerol, representing an interesting alternative for fuel cell systems.
Resumo:
The complete structural elucidation of complex lipids, including glycerophospholipids, using only mass spectrometry represents a major challenge to contemporary analytical technologies. Here, we demonstrate that product ions arising from the collision-induced dissociation (CID) of the [M + Na] + adduct ions of phospholipids can be isolated and subjected to subsequent gas-phase ozonolysis-known as ozone-induced dissociation (OzID)-in a linear ion-trap mass spectrometer. The resulting CID/OzID experiment yields abundant product ions that are characteristic of the acyl substitution on the glycerol backbone (i.e., sn-position). This approach is shown to differentiate sn-positional isomers, such as the regioisomeric phosphatidylcholine pair of PC 16:0/18:1 and PC 18:1/16:0. Importantly, CID/OzID provides a sensitive diagnostic for the existence of an isomeric mixture in a given sample. This is of very high value for the analysis of tissue extracts since CID/OzID analyses can reveal changes in the relative abundance of isomeric constituents even within different tissues from the same animal. Finally, we demonstrate the ability to assign carbon-carbon double bond positions to individual acyl chains at specific backbone positions by adding subsequent CID and/or OzID steps to the workflow and that this can be achieved in a single step using a hybrid triple quadrupole-linear ion trap mass spectrometer. This unique approach represents the most complete and specific structural analysis of lipids by mass spectrometry demonstrated to date and is a significant step towards comprehensive top-down lipidomics. This journal is © The Royal Society of Chemistry 2014. Grant Number ARC/DP0986628, ARC/FT110100249, ARC/LP110200648
Resumo:
Glycerophospholipids (GPs) that differ in the relative position of the two fatty acyl chains on the glycerol backbone (i.e., sn-positional isomers) can have distinct physicochemical properties. The unambiguous assignment of acyl chain position to an individual GP represents a significant analytical challenge. Here we describe a workflow where phosphatidylcholines (PCs) are subjected to ESI for characterization by a combination of differential mobility spectrometry and MS (DMS-MS). When infused as a mixture, ions formed from silver adduction of each phospholipid isomer {e.g., [PC (16:0/18:1) + Ag]+ and [PC (18:1/16:0) + Ag]+} are transmitted through the DMS device at discrete compensation voltages. Varying their relative amounts allows facile and unambiguous assignment of the sn-positions of the fatty acyl chains for each isomer. Integration of the well-resolved ion populations provides a rapid method (< 3 min) for relative quantification of these lipid isomers. The DMS-MS results show excellent agreement with established, but time-consuming, enzymatic approaches and also provide superior accuracy to methods that rely on MS alone. The advantages of this DMS-MS method in identification and quantification of GP isomer populations is demonstrated by direct analysis of complex biological extracts without any prior fractionation.
Resumo:
Road deposited dust is a complex mixture of pollutants derived from a wide range of sources. Accurate identification of these sources is seminal for effective source-oriented control measures. A range of techniques such as enrichment factor analysis (EF), principal component analysis (PCA) and hierarchical cluster analysis (HCA) are available for identifying sources of complex mixtures. However, they have multiple deficiencies when applied individually. This study presents an approach for the effective utilisation of EF, PCA and HCA for source identification, so that their specific deficiencies on an individual basis are eliminated. EF analysis confirmed the non-soil origin of metals such as Na, Cu, Cd, Zn, Sn, K, Ca, Sb, Ba, Ti, Ni and Mo providing guidance in the identification of anthropogenic sources. PCA and HCA identified four sources, with soil and asphalt wear in combination being the most prominent sources. Other sources were tyre wear, brake wear and sea salt.
Resumo:
Syntheses of the isomers of the C11 acid, 1(a),3(a)- dimethylcyclohexane-1 (e),2(e),3(e)-tricarboxylic acid (A) and 1(a),3(e)-dimethylcyclohexane-1(e),2(e),3(a)-tricarboxylic acid (B), the latter by two different routes, are reported. Two of the four possible isomers of the precursor triester, trimethyl 1-methylcyclohexane-1,2,3-tricarboxylate, on individual methylation followed by hydrolysis, gave the trans,meso-acid (A), identified by comparison with an authentic sample, and the cis,trans-form (B) whose structure and configuration were proved by comparison with a specimen obtained by the unambiguous and highly stereoselective second synthesis. This demonstrated that methylation of the triester isomers occurs stereospecifically and exclusively at C-3. In the second sequence, it has been possible to assign definite conformations to four key intermediates and the final product, directly from n.m.r. spectra, from changes in these spectra accompanying specific steps, and from chemical evidence. Comparison of the n.m.r. spectra of the isomeric triesters (A) and (B) has provided unequivocal proof of the accepted trans,meso configuration for the abietic acid degradation product (A).
Resumo:
Solid state reactive diffusion in binary Au-Sn system has been studied using the diffusion couple consisting of pure elements Au and Sn annealed in the temperature range of 180-100 degrees C for 25 h Interdiffusion zone consists of four intermetallic phases Au5Sn, AuSn, AuSn2, and AuSn4 Activation energy for parabolic growth constant and integrated diffusivity for each phase has been calculated to indicate about the possible mechanism for diffusion controlled growth process Parabolic growth constant of individual phases has also been compared Kirkendall marker plane position has been indicated in the interdiffusion zone and furthermore the ratio of intrinsic diffusivities of species has also been determined. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Raportissa on arvioitu ilmastonmuutoksen vaikutusta Suomen maaperän talviaikaiseen jäätymiseen lämpösummien perusteella. Laskelmat kuvaavat roudan paksuutta nimenomaisesti lumettomilla alueilla, esimerkiksi teillä, joilta satanut lumi aurataan pois. Luonnossa lämpöä eristävän lumipeitteen alla routaa on ohuemmin kuin tällaisilla lumettomilla alueilla. Toisaalta luonnollisessa ympäristössä paikalliset erot korostuvat johtuen mm. maalajeista ja kasvillisuudesta. Roudan paksuudet laskettiin ensin perusjakson 1971–2000 ilmasto-oloissa talviaikaisten säähavaintotietoihin pohjautuvien lämpötilojen perusteella. Sen jälkeen laskelmat toistettiin kolmelle tulevalle ajanjaksolle (2010–2039, 2040–2069 ja 2070–2099) kohottamalla lämpötiloja ilmastonmuutosmallien ennustamalla tavalla. Laskelman pohjana käytettiin 19 ilmastomallin A1B-skenaarioajojen keskimäärin simuloimaa lämpötilan muutosta. Tulosten herkkyyden arvioimiseksi joitakin laskelmia tehtiin myös tätä selvästi heikompaa ja voimakkaampaa lämpenemisarviota käyttäen. A1B-skenaarion mukaisen lämpötilan nousun toteutuessa nykyisiä mallituloksia vastaavasti routakerros ohenee sadan vuoden aikana Pohjois-Suomessa 30–40 %, suuressa osassa maan keski- ja eteläosissa 50–70 %. Jo lähivuosikymmeninä roudan ennustetaan ohentuvan 10–30 %, saaristossa enemmän. Mikäli lämpeneminen toteutuisi voimakkaimman tarkastellun vaihtoehdon mukaisesti, roudan syvyys pienenisi tätäkin enemmän. Roudan paksuuden vuosienvälistä vaihtelua ja sen muuttumista tulevaisuudessa pyrittiin myös arvioimaan. Leutoina talvina routa ohenee enemmän kuin normaaleina tai ankarina pakkastalvina. Päivittäistä sään vaihtelua simuloineen säägeneraattorin tuottamassa aineistoissa esiintyi kuitenkin liian vähän hyvin alhaisia ja hyvin korkeita lämpötiloja. Siksi näitten lämpötilatietojen pohjalta laskettu roudan paksuuskin ilmeisesti vaihtelee liian vähän vuodesta toiseen. Kelirikkotilanteita voi esiintyä myös kesken routakauden, jos useamman päivän suojasää ja samanaikainen runsas vesisade pääsevät sulattamaan maata. Tällaiset routakauden aikana sattuvat säätilat näyttävätkin yleistyvän lähivuosikymmeninä. Vuosisadan loppua kohti ne sen sijaan maan eteläosissa jälleen vähenevät, koska routakausi lyhenee oleellisesti. Tulevia vuosikymmeniä koskevien ilmastonmuutosennusteiden ohella routaa ja kelirikon esiintymistä on periaatteessa mahdollista ennustaa myös lähiaikojen sääennusteita hyödyntäen. Pitkät, viikkojen tai kuukausien mittaiset sääennusteet eivät tosin ole ainakaan vielä erityisen luotettavia, mutta myös lyhyemmistä ennusteista voisi olla hyötyä mm. tienpitoa suunniteltaessa.
Resumo:
In this paper the effects of constant and cyclic power loads on the evolution of interfacial reaction layers in lead-free solder interconnections are presented. Firstly, the differences in the growth behavior of intermetallic compound (IMC) layers at the cathode and anode sides of the interconnections are rationalized. This is done by considering the changes in the intrinsic fluxes of elements owing to electromigration as well as taking into account the fact that the growth of Cu3Sn and Cu6Sn5 are coupled via interfacial reactions. In this way, better understanding of the effect of electron flux on the growth of each individual layer in the Cu-Sn system can be achieved. Secondly, it is shown that there is a distinct difference between steady-state current stressing (constant current, constant temperature) and power cycling with alternating on- and off-cycle periods (accompanied by a change of temperature). The reasons behind the observed differences are subsequently discussed. Finally, special care is taken to ensure that the current densities are chosen in such a way that there is no risk for even partial melting of the solder interconnections.
Resumo:
The potential energy surfaces of both neutral and dianionic SnC(2)P(2)R(2) (R=H, tBu) ring systems have been explored at the B3PW91/LANL2DZ (Sn) and 6-311 + G* (other atoms) level. In the neutral isomers the global minimum is a nido structure in which a 1,2-diphosphocyclobutadiene ring (1,2-DPCB) is capped by the Sn. Interestingly, the structure established by Xray diffraction analysis, for R=tBu, is a 1,3-DPCB ring capped by Sn and it is 2.4 kcal mol(-1) higher in energy than the 1,2-DPCB ring isomer. This is possibly related to the kinetic stability of the 1,3-DPCB ring, which might originate from the synthetic precursor ZrCp(2)tBu(2)C(2)P(2). In the case of the dianionic isomers we observe only a 6 pi-electron aromatic structure as the global minimum, similarly to the cases of our previously reported results with other types of heterodiphospholes.([1,4,19]) The existence of large numbers of cluster-type isomers in neutral and 6 pi-planar structures in the dianions SnC(2)P(2)R(2)(2-) (R=H, tBu) is due to 3D aromaticity in neutral clusters and to 2D pi aromaticity of the dianionic rings. Relative energies of positional isomers mainly depend on: 1) the valency and coordination number of the Sn centre, 2) individual bond strengths, and 3) the steric effect of tBu groups. A comparison of neutral stannadiphospholes with other structurally related C(5)H(5)(+) analogues indicates that Sn might be a better isolobal analogue to P(+) than to BH or CH(+). The variation in global minima in these C(5)H(5)(+) analogues is due to characteristic features such as 1) the different valencies of C, B, P and Sn, 2) the electron deficiency of B, 3) weaker p pi-p pi bonding by P and Sn atoms, and 4) the tendency of electropositive elements to donate electrons to nido clusters. Unlike the C5H5+ systems, all C(5)H(5)(-) analogues have 6 pi-planar aromatic structures as global minima. The differences in the relative ordering of the positional isomers and ligating properties are significant and depend on 1) the nature of the pi orbitals involved, and 2) effective overlap of orbitals.
Resumo:
Fully structured and matured open source spatial and temporal analysis technology seems to be the official carrier of the future for planning of the natural resources especially in the developing nations. This technology has gained enormous momentum because of technical superiority, affordability and ability to join expertise from all sections of the society. Sustainable development of a region depends on the integrated planning approaches adopted in decision making which requires timely and accurate spatial data. With the increased developmental programmes, the need for appropriate decision support system has increased in order to analyse and visualise the decisions associated with spatial and temporal aspects of natural resources. In this regard Geographic Information System (GIS) along with remote sensing data support the applications that involve spatial and temporal analysis on digital thematic maps and the remotely sensed images. Open source GIS would help in wide scale applications involving decisions at various hierarchical levels (for example from village panchayat to planning commission) on economic viability, social acceptance apart from technical feasibility. GRASS (Geographic Resources Analysis Support System, http://wgbis.ces.iisc.ernet.in/grass) is an open source GIS that works on Linux platform (freeware), but most of the applications are in command line argument, necessitating a user friendly and cost effective graphical user interface (GUI). Keeping these aspects in mind, Geographic Resources Decision Support System (GRDSS) has been developed with functionality such as raster, topological vector, image processing, statistical analysis, geographical analysis, graphics production, etc. This operates through a GUI developed in Tcltk (Tool command language / Tool kit) under Linux as well as with a shell in X-Windows. GRDSS include options such as Import /Export of different data formats, Display, Digital Image processing, Map editing, Raster Analysis, Vector Analysis, Point Analysis, Spatial Query, which are required for regional planning such as watershed Analysis, Landscape Analysis etc. This is customised to Indian context with an option to extract individual band from the IRS (Indian Remote Sensing Satellites) data, which is in BIL (Band Interleaved by Lines) format. The integration of PostgreSQL (a freeware) in GRDSS aids as an efficient database management system.
Resumo:
This paper investigates a new Glowworm Swarm Optimization (GSO) clustering algorithm for hierarchical splitting and merging of automatic multi-spectral satellite image classification (land cover mapping problem). Amongst the multiple benefits and uses of remote sensing, one of the most important has been its use in solving the problem of land cover mapping. Image classification forms the core of the solution to the land cover mapping problem. No single classifier can prove to classify all the basic land cover classes of an urban region in a satisfactory manner. In unsupervised classification methods, the automatic generation of clusters to classify a huge database is not exploited to their full potential. The proposed methodology searches for the best possible number of clusters and its center using Glowworm Swarm Optimization (GSO). Using these clusters, we classify by merging based on parametric method (k-means technique). The performance of the proposed unsupervised classification technique is evaluated for Landsat 7 thematic mapper image. Results are evaluated in terms of the classification efficiency - individual, average and overall.
Strongly magnetized cold degenerate electron gas: Mass-radius relation of the magnetized white dwarf
Resumo:
We consider a relativistic, degenerate electron gas at zero temperature under the influence of a strong, uniform, static magnetic field, neglecting any form of interactions. Since the density of states for the electrons changes due to the presence of the magnetic field (which gives rise to Landau quantization), the corresponding equation of state also gets modified. In order to investigate the effect of very strong magnetic field, we focus only on systems in which a maximum of either one, two, or three Landau level(s) is/are occupied. This is important since, if a very large number of Landau levels are filled, it implies a very low magnetic field strength which yields back Chandrasekhar's celebrated nonmagnetic results. The maximum number of occupied Landau levels is fixed by the correct choice of two parameters, namely, the magnetic field strength and the maximum Fermi energy of the system. We study the equations of state of these one-level, two-level, and three-level systems and compare them by taking three different maximum Fermi energies. We also find the effect of the strong magnetic field on the mass-radius relation of the underlying star composed of the gas stated above. We obtain an exciting result that it is possible to have an electron-degenerate static star, namely, magnetized white dwarfs, with a mass significantly greater than the Chandrasekhar limit in the range 2.3-2.6M(circle dot), provided it has an appropriate magnetic field strength and central density. In fact, recent observations of peculiar type Ia supernovae-SN 2006gz, SN 2007if, SN 2009dc, SN 2003fg-seem to suggest super-Chandrasekhar-mass white dwarfs with masses up to 2.4-2.8M(circle dot) as their most likely progenitors. Interestingly, our results seem to lie within these observational limits.