978 resultados para supercritical fluids
Resumo:
Mineralogical investigations have determined the sites of u and Th associated with two radioelement-enriched granites from different geological settings. In the Ririwai ring complex, Nigeria, the u- and Th-bearing accessories have been greatly affected by post-magmatic alteration of the biotite granite. Primary thorite, zircon and monazite were altered to Zr(±Y)-rich thorite, partially metamict zircon (enriched in Th, U, Y, P, Fe, Mn, Ca) and an unidentified LREE-phase respectively, by pervasive fluids which later precipitated Zr-rich coffinite. More intense, localised alteration and albitisation completely remobilised primary accessories and gave rise to a distinctive generation of haematite- and uranothorite-enriched zircon with clear, Hi-enriched rims and xenotime overgrowths. In the Ririwai lode, microclinisation and later greisenisation locally remobilised or altered zircon and deposited Y-ricl1 coffinite and Y(±Zr)-rich thorite which was overgrown by traces of xenotime and LREE-phase(s) of complex and variable composition. Compositions indicating extensive solid-solution among thorite, coffinite, xenotime and altered zircon are probably metastable and formed at low temperatures. The widespread occurrence of REE-rich fluorite suggests that F-complexing aided the mobility of REE, Y, U, Th and Zr during late-magmatic to post-magmatic alteration, while uranyl-carbonate complexing may have occurred during albitisation. The Caledonian, Helmsdale granite in northern Scotland has undergone pervasive and localised hydrothermal alteration associated with U enrichment. Zircon xenocrysts, primary sphene and apatite contain a small.proportion of this U which is largely adsorbed on to secondary iron-oxide, TiOand phyllosilicates.Additional sites for U in the overlying, Lower Devonian Ousdale arkose include coffinite, secondary uranyl phosphates, hydrocarbon and traces of xenotime and unidentified LREE-phases. U may have been leached from the granite and deposited in the arkose, along channelways associated with the Helmsdale fault, by convecting, hydrothermal fluids
Resumo:
The fluids used in hydraulic systems inevitably contain large numbers of small, solid particles, a phenomenon known as 'fluid contamination'. Particles enter a hydraulic system from the environment, and are generated within it by processes of wear. At the same time, particles are removed from the system fluid by sedimentation and in hydraulic filters. This thesis considers the problems caused by fluid contamination, as they affect a manufacturer of axial piston pumps. The specific project aim was to investigate methods of predicting or determining the effects of fluid contamination on this type of pump. The thesis starts with a theoretical analysis of the contaminated lubrication of a slipper-pad bearing. Statistical methods are used to develop a model of the blocking, by particles, of the control capillaries used in such bearings. The results obtained are compared to published, experimental data. Poor correlation between theory and practice suggests that more research is required in this area before such theoretical analysis can be used in industry. Accelerated wear tests have been developed in the U.S.A. in an attempt to predict pump life when operating on contaminated fluids. An analysis of such tests shows that reliability data can only be obtained from extensive test programmes. The value of contamination testing is suggested to be in determining failure modes, and in identifying those pump components which are susceptible to the effects of contamination. A suitable test is described, and the results of a series of tests on axial piston pumps are presented and discussed. The thesis concludes that pump reliability data can only be obtained from field experience. The level of confidence which can be placed in results from normal laboratory testing is shown to be too low for the data to be of real value. Recommendations are therefore given for the ways in which service data should be collected and analysed.
Resumo:
Disclosed is a fluid sampling apparatus (12). The apparatus has a sample inlet port (14) in communication with a fluid space (10) containing the fluid to be sampled. An analysis port (16) is provided for communication with an analysis device such as a mass spectrometer. A dilution gas injection port (22) is provided to dilute fluid is sampled from the fluid space via the sample inlet port. The diluted sample fluid is then conducted to the analysis port. The sampling apparatus is intended particularly for use in analysing biomass pyrolysis processes.
Resumo:
Finite element simulations have been performed along side normal mode analysis on the linear stability that examined the development of volumetrically heated flow patterns in a horizontal layer controlled by the Prandtl number, Pr, and the Grashof number, Gr. The fluid was bounded by an isothermal plane above an adiabatic plane. In the simulations performed here, a number of convective polygonal planforms occurred, as Gr increased above the critical Grashof number, Grc at Pr = 7, while roll structures were observed for Pr < 1 at 2Grc.
Resumo:
Finite element simulations have been performed along side Galerkin-type calculations that examined the development of volumetrically heated flow patterns in a horizontal layer controlled by the Prandtl number, Pr, and the Grashof number, Gr. The fluid was bounded by an isothermal plane above an adiabatic plane. In the simulations performed here, a number of convective polygonal planforms occurred, as Gr increased above the critical Grashof number, Grc at Pr = 7, while roll structures were observed for Pr < 1 at 2Grc.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
The interlayer pores of swelling 2:1 clays provide an ideal 2-dimensional environment in which to study confined fluids. In this paper we discuss our understanding of the structure and dynamics of interlayer fluid species in expanded clays, based primarily on the outcome of recent molecular modelling and neutron scattering studies. Counterion solvation is compared with that measured in bulk solutions, and at a local level the cation-oxygen coordination is found to be remarkably similar in these two environments. However, for the monovalent ions the contribution to the first coordination shell from the clay surfaces increases with counterion radius. This gives rise to inner-sphere (surface) complexes in the case of potassium and caesium. In this context, the location of the negative clay surface charge (i.e. arising from octahedral or tetrahedral substitution) is also found to be of major importance. Divalent cations, such as calcium, eagerly solvate to form outer-sphere complexes. These complexes are able to pin adjacent clay layers together, and thereby prevent colloidal swelling. Confined water molecules form hydrogen bonds to each other and to the clays' surfaces. In this way their local environment relaxes to close to the bulk water structure within two molecular layers of the clay surface. Finally, we discuss the way in which the simple organic molecules methane, methanol and ethylene glycol behave in the interlayer region of hydrated clays. Quasi-elastic neutron scattering of isotopically labelled interlayer CH 3OD and (CH2OD)2 in deuterated clay allows us to measure the diffusion of the CH3- and CH2-groups in both clay and liquid environments. We find that in both the one-layer methanol solvates and the two-layer glycol solvates the diffusion of the most mobile organic molecules is close to that in the bulk solution.
Resumo:
∗The author was partially supported by Alexander von Humboldt Foundation and the Contract MM-516 with the Bulgarian Ministry of Education, Science and Thechnology.
Resumo:
AMS subject classification: 60J80, 62F12, 62P10.
Resumo:
2000 Mathematics Subject Classification: 60J80, 60F05
Resumo:
2010 Mathematics Subject Classification: 60J80.
Resumo:
This paper reports the effect of curing on the susceptibility of cementitious composites to carbonation using supercritical carbon dioxide. Samples made using a compression moulding technique were cured in water before and/or after carbonation and the effect on porosity, microstructure, solid phase assemblage and flexural strength was determined. In terms of development of mechanical strength, no benefit was gained from any period of pre- or post-carbonation curing regime. Yet samples cured prior to carbonation underwent minimal chemical reaction between supercritical carbon dioxide and calcium hydroxide, unhydrated cement or C-S-H. Thus there was no correlation between chemical degree of reaction and strength development. The effects responsible for the marked strength gain in supercritically carbonated samples must involve subtle changes in the microstructure of the C-S-H gel, not simple pore filling by calcium carbonate as is often postulated. © 2013 Elsevier Ltd. All rights reserved.\.
Resumo:
This work combined compression moulding with subsequent super-critical carbonation treatment (100 bar, 60 °C, 24 h) to fabricate cement and/or lime based ceramic composites with various aggregates. Composites were examined using mechanical testing, XRD, He pycnometry and thin-section petrography. Composites with lime-only binders were significantly weaker than those with cement-lime binders regardless of the degree of carbonation. Flexural strengths in excess of >10 MPa were routinely achieved in large (>100 mm) specimens. Aggregate type (calcareous vs. siliceous) had a significant effect on the microstructure and properties of the composites. Calcareous aggregates appear to augment the strength enhancement effected during super-critical carbonation by encouraging preferential precipitation of calcite at the binder-aggregate interface.
Resumo:
Here we report on a potential catalytic process for efficient clean-up of plastic pollution in waters, such as the Great Pacific Garbage Patch (CPGP). Detailed catalytic mechanisms of RuO2 during supercritical water gasification of common polyolefin plastics including low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP) and polystyrene (PP), have been investigated in a batch reactor at 450 °C, 60 min. All four plastics gave very high carbon gasification efficiencies (CGE) and hydrogen gasification efficiencies (HGE). Methane was the highest gas component, with a yield of up to 37 mol kg−1LDPE using the 20 wt% RuO2 catalyst. Evaluation of the gas yields, CGE and HGE revealed that the conversion of PS involved thermal degradation, steam reforming and methanation; whereas hydrogenolysis was a possible additional mechanism during the conversion of aliphatic plastics. The process has the benefits of producing a clean-pressurized methane-rich fuel gas as well as cleaning up hydrocarbons-polluted waters.
Resumo:
Five samples including a composite refuse derived fuel (RDF) and four combustible components of municipal solid wastes (MSW) have been reacted under supercritical water conditions in a batch reactor. The reactions have been carried out at 450 °C for 60 min reaction time, with or without 20 wt% RuO2/gamma-alumina catalyst. The reactivities of the samples depended on their compositions; with the plastic-rich samples, RDF and mixed waste plastics (MWP), giving similar product yields and compositions, while the biogenic samples including mixed waste wood (MWW) and textile waste (TXT) also gave similar reaction products. The use of the heterogeneous ruthenium-based catalyst gave carbon gasification efficiencies (CGE) of up to 99 wt%, which was up by at least 83% compared to the non-catalytic tests. In the presence of RuO2 catalyst, methane, hydrogen and carbon dioxide became the dominant gas products for all five samples. The higher heating values (HHV) of the gas products increased at least two-fold in the presence of the catalyst compared to non-catalytic tests. Results show that the ruthenium-based catalyst was active in feedstock steam reforming, methanation and possible direct hydrogenolysis of C-C bonds. This work provides new insights into the catalytic mechanisms of RuO2 during SCWG of carbonaceous materials, along with the possibility of producing high yields of methane from MSW fractions.