955 resultados para substrate
Resumo:
The C4 repressor of the temperate bacteriophages P1 and P7 inhibits antirepressor (Ant) synthesis and is essential for establishment and maintenance of lysogeny. C4 is an antisense RNA acting on a target, Ant mRNA, which is transcribed from the same promoter. The antisense-target RNA interaction requires processing of C4 RNA from a precursor RNA. Here we show that 5' maturation of C4 RNA in vivo depends on RNase P. In vitro, Escherichia coli RNase P and its catalytic RNA subunit (M1 RNA) can generate the mature 5' end of C4 RNA from P1 by a single endonucleolytic cut, whereas RNase P from the E. coli rnpA49 mutant, carrying a missense mutation in the RNase P protein subunit, is defective in the 5' maturation of C4 RNA. Primer extension analysis of RNA transcribed in vivo from a plasmid carrying the P1 c4 gene revealed that 5'-mature C4 RNA was the predominant species in rnpA+ bacteria, whereas virtually no mature C4 RNA was found in the temperature-sensitive rnpA49 strain at the restrictive temperature. Instead, C4 RNA molecules carrying up to five extra nucleotides beyond the 5' end accumulated. The same phenotype was observed in rnpA+ bacteria which harbored a plasmid carrying a P7 c4 mutant gene with a single C-->G base substitution in the structural homologue to the CCA 3' end of tRNAs. Implications of C4 RNA processing for the lysis/lysogeny decision process of bacteriophages P1 and P7 are discussed.
Resumo:
A fundamental catalytic principle for protein enzymes in the use of binding interactions away from the site of chemical transformation for catalysis. We have compared the binding and reactivity of a series of oligonucleotide substrates and products of the Tetrahymena ribozyme, which catalyzes a site-specific phosphodiester cleavage reaction: CCCUCUpA+G<-->CCCUCU-OH+GpA. The results suggest that this RNA enzyme, like protein enzymes, can utilize binding interactions to achieve substantial catalysis via entropic fixation and substrate destabilization. The stronger binding of the all-ribose oligonucleotide product compared to an analog with a terminal 3' deoxyribose residue gives an effective concentration of 2200 M for the 3' hydroxyl group, a value approaching those obtained with protein enzymes and suggesting the presence of a structurally well defined active site capable of precise positioning. The stabilization from tertiary binding interactions is 40-fold less for the oligonucleotide substrate than the oligonucleotide product, despite the presence of the reactive phosphoryl group in the substrate. This destabilization is accounted for by a model in which tertiary interactions away from the site of bond cleavage position the electron-deficient 3' bridging phosphoryl oxygen of the oligonucleotide substrate next to an electropositive Mg ion. As the phosphodiester bond breaks and this 3' oxygen atom develops a negative charge in the transition state, the weak interaction of the substrate with Mg2+ becomes strong. These strategies of "substrate destabilization" and "transition state stabilization" provide estimated rate enhancements of approximately 280- and approximately 60-fold, respectively. Analogous substrate destabilization by a metal ion or hydrogen bond donor may be used more generally by RNA and protein enzymes catalyzing reactions of phosphate esters.
Resumo:
The exchangeability of the substrate water molecules at the catalytic site of water oxidation in photosystem II has been probed by isotope-exchange measurements using mass spectrometric detection of flash-induced oxygen evolution. A stirred sample chamber was constructed to reduce the lag time between injection of H2(18)O and the detecting flash by a factor of more than 1000 compared to the original experiments by R. Radmer and O. Ollinger [(1986) FEBS Lett. 195, 285-289]. Our data show that there is a slow (t1/2 approximately 500 ms, 10 degrees C) and a fast (t1/2 <25 ms, 10 degrees C) exchanging substrate water molecule in the S3 state of photosystem II. The slow exchange is coupled with an activation energy of about 75 kJ/mol and is discussed in terms of a terminal manganese oxo ligand, while the faster exchanging substrate molecule may represent a water molecule not directly bound to the manganese center.
Resumo:
Plasmid-encoded addiction genes augment the apparent stability of various low copy number bacterial plasmids by selectively killing plasmid-free (cured) segregants or their progeny. The addiction module of plasmid prophage P1 consists of a pair of genes called phd and doc. Phd serves to prevent host death when the prophage is retained and, should retention mechanisms fail, Doc causes death on curing. Doc acts as a cell toxin to which Phd is an antidote. In this study we show that host mutants with defects in either subunit of the ClpXP protease survive the loss of a plasmid that contains a P1 addiction module. The small antidote protein Phd is fully stable in these two mutant hosts, whereas it is labile in a wild-type host. We conclude that the role of ClpXP in the addiction mechanism of P1 is to degrade the Phd protein. This conclusion situates P1 among plasmids that elicit severe withdrawal symptoms and are able to do so because they encode both a cell toxin and an actively degraded macromolecule that blocks the synthesis or function of the toxin.
Resumo:
Using precursor tRNA molecules to study RNA-protein interactions, we have identified an RNA motif recognized by eukaryotic RNase P (EC 3.1.26.5). Analysis of circularly permuted precursors indicates that interruptions in the sugar-phosphate backbone are not tolerated in the acceptor stem, in the T stem-loop, or between residues A-9 and G-10. Prokaryotic RNase P will function with a minihelix consisting of the acceptor stem connected directly to the T stem-loop. Eukaryotic RNase P cannot use such a minimal substrate unless a linker sequence is added in the gap where the D stem and anticodon stem-loop were deleted.
Resumo:
We report a study of synthesising air-stable, nearly monodispersed bimetallic colloids of Co/Pd and Fe/Mo of varying compositions as active catalysts for the growth of carbon nanotubes. Using these catalysts we have investigated the effects of catalyst and substrate on the carbon nanostructures formed in a plasma-enhanced chemical vapour deposition (PECVD) process. We will show how it is possible to assess the influence of both the catalyst and the support on the controlled growth of carbon nanotube and nanofiber arrays. The importance of the composition of the catalytic nuclei will be put into perspective with other results from the literature. Furthermore, the influence of other synthetic parameters such as the nature of the nanoparticle catalysts will also be analysed and discussed in detail.
Resumo:
BACKGROUND Mapping to identify scar-related ventricular tachycardia re-entry circuits during sinus rhythm focuses on sites with abnormal electrograms or pace-mapping findings of QRS morphology and long stimulus to QRS intervals. We hypothesized that (1) these methods do not necessarily identify the same sites and (2) some electrograms are far-field potentials that can be recognized by pacing. METHODS AND RESULTS From 12 patients with coronary disease and recurrent ventricular tachycardia undergoing catheter ablation, we retrospectively analyzed electrograms and pacing at 546 separate low bipolar voltage (<1.5 mV) sites. Electrograms were characterized as showing evidence of slow conduction if late potentials (56%) or fractionated potentials (76%) were present. Neither was present at (13%) sites. Pacing from the ablation catheter captured 70% of all electrograms. Higher bipolar voltage and fractionation were independent predictors for pace capture. There was a linear correlation between the stimulus to QRS duration during pacing and the lateness of a capturing electrogram (P<0.001), but electrogram and pacing markers of slow conduction were discordant at 40% of sites. Sites with far-field potentials, defined as those that remained visible and not captured by pacing stimuli, were identified at 48% of all pacing sites, especially in areas of low bipolar voltage and late potentials. Initial radiofrequency energy application rendered 74% of targeted sites electrically unexcitable. CONCLUSIONS Far-field potentials are common in scar areas. Combining analysis of electrogram characteristics and assessment of pace capture may refine identification of substrate targets for radiofrequency ablation.
Resumo:
"August 1974."
Resumo:
The large number of protein kinases makes it impractical to determine their specificities and substrates experimentally. Using the available crystal structures, molecular modeling, and sequence analyses of kinases and substrates, we developed a set of rules governing the binding of a heptapeptide substrate motif (surrounding the phosphorylation site) to the kinase and implemented these rules in a web-interfaced program for automated prediction of optimal substrate peptides, taking only the amino acid sequence of a protein kinase as input. We show the utility of the method by analyzing yeast cell cycle control and DNA damage checkpoint pathways. Our method is the only available predictive method generally applicable for identifying possible substrate proteins for protein serine/threonine kinases and helps in silico construction of signaling pathways. The accuracy of prediction is comparable to the accuracy of data from systematic large-scale experimental approaches.
Resumo:
Molecular modelling of human CYP1B1 based on homology with the mammalian P450, CYP2C5, of known three-dimensional structure is reported. The enzyme model has been used to investigate the likely mode of binding for selected CYP1B1 substrates, particularly with regard to the possible effects of allelic variants of CYP1B1 on metabolism. In general, it appears that the CYP1B1 model is consistent with known substrate selectivity for the enzyme, and the sites of metabolism can be rationalized in terms of specific contacts with key amino acid residues within the CYP1B1 heme locus. Further-more, a mode of binding interaction for the inhibitor, a-naphthoflavone, is presented which accords with currently available information. The current paper shows that a combination of molecular modelling and experimental determinations on the substrate metabolism for CYP1B1 allelic variants can aid in the understanding of structure-function relationships within P450 enzymes. (C) 2003 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Human cytochrome P450 (P450) 2D6 is an important enzyme involved in the metabolism of drugs, many of which are amines or contain other basic nitrogen atoms. Asp301 has generally been considered to be involved in electrostatic docking with the basic substrates, on the basis of previous modeling studies and site-directed mutagenesis. Substitution of Glu216 with a residue other than Asp strongly attenuated the binding of quinidine, bufuralol, and several other P450 2D6 ligands. Catalytic activity with the substrates bufuralol and 4-methoxyphenethylamine was strongly inhibited by neutral or basic mutations at Glu216 (>95%), to the same extent as the substitution of Asn at Asp301. Unlike the Asp301 mutants, the Gln216 mutant (E216Q) retained 40% enzyme efficiency with the substrate spirosulfonamide, devoid of basic nitrogen, suggesting that the substitutions at Glu216 affect binding of amine substrates more than other catalytic steps. Attempts to induce catalytic specificity toward new substrates by substitutions at Asp301 and Glu216 were unsuccessful. Collectively, the results provide evidence for electrostatic interaction of amine substrates with Glu216, and we propose that both of these acidic residues plus at least another residue(s) is (are) involved in binding the repertoire of P450 2D6 ligands.