988 resultados para stripixel detector
Resumo:
PURPOSE: To determine if multi–detector row computed tomography (CT) can replace conventional radiography and be performed alone in severe trauma patients for the depiction of thoracolumbar spine fractures. MATERIALS AND METHODS: One hundred consecutive severe trauma patients who underwent conventional radiography of the thoracolumbar spine as well as thoracoabdominal multi–detector row CT were prospectively identified. Conventional radiographs were reviewed independently by three radiologists and two orthopedic surgeons; CT images were reviewed by three radiologists. Reviewers were blinded both to one another’s reviews and to the results of initial evaluation. Presence, location, and stability of fractures, as well as quality of reviewed images, were assessed. Statistical analysis was performed to determine sensitivity and interobserver agreement for each procedure, with results of clinical and radiologic follow-up as the standard of reference. The time to perform each examination and the radiation dose involved were evaluated. A resource cost analysis was performed. RESULTS: Sixty-seven fractured vertebrae were diagnosed in 26 patients. Twelve patients had unstable spine fractures. Mean sensitivity and interobserver agreement, respectively, for detection of unstable fractures were 97.2% and 0.951 for multi–detector row CT and 33.3% and 0.368 for conventional radiography. The median times to perform a conventional radiographic and a multi–detector row CT examination, respectively, were 33 and 40 minutes. Effective radiation doses at conventional radiography of the spine and thoracoabdominal multi–detector row CT, respectively, were 6.36 mSv and 19.42 mSv. Multi–detector row CT enabled identification of 146 associated traumatic lesions. The costs of conventional radiography and multi–detector row CT, respectively, were $145 and $880 per patient. CONCLUSION: Multi–detector row CT is a better examination for depicting spine fractures than conventional radiography. It can replace conventional radiography and be performed alone in patients who have sustained severe trauma.
Resumo:
A detailed study is presented of the expected performance of the ATLAS detector. The reconstruction of tracks, leptons, photons, missing energy and jets is investigated, together with the performance of b-tagging and the trigger. The physics potential for a variety of interesting physics processes, within the Standard Model and beyond, is examined. The study comprises a series of notes based on simulations of the detector and physics processes, with particular emphasis given to the data expected from the first years of operation of the LHC at CERN.
Resumo:
Neutral particles with long decay paths that decay to many-particle final states represent, from an experimental point of view, a challenge both for the trigger and for the reconstruction capabilities of the ATLAS apparatus. The Hidden Valley scenario serves as an excellent setting for the purpose of exploring the challenges to the trigger posed by long-lived particles.
Resumo:
PURPOSE Computed tomography (CT) accounts for more than half of the total radiation exposure from medical procedures, which makes dose reduction in CT an effective means of reducing radiation exposure. We analysed the dose reduction that can be achieved with a new CT scanner [Somatom Edge (E)] that incorporates new developments in hardware (detector) and software (iterative reconstruction). METHODS We compared weighted volume CT dose index (CTDIvol) and dose length product (DLP) values of 25 consecutive patients studied with non-enhanced standard brain CT with the new scanner and with two previous models each, a 64-slice 64-row multi-detector CT (MDCT) scanner with 64 rows (S64) and a 16-slice 16-row MDCT scanner with 16 rows (S16). We analysed signal-to-noise and contrast-to-noise ratios in images from the three scanners and performed a quality rating by three neuroradiologists to analyse whether dose reduction techniques still yield sufficient diagnostic quality. RESULTS CTDIVol of scanner E was 41.5 and 36.4 % less than the values of scanners S16 and S64, respectively; the DLP values were 40 and 38.3 % less. All differences were statistically significant (p < 0.0001). Signal-to-noise and contrast-to-noise ratios were best in S64; these differences also reached statistical significance. Image analysis, however, showed "non-inferiority" of scanner E regarding image quality. CONCLUSIONS The first experience with the new scanner shows that new dose reduction techniques allow for up to 40 % dose reduction while still maintaining image quality at a diagnostically usable level.
Resumo:
This Letter reports a measurement of the high-mass Drell-Yan differential cross-section in proton-proton collisions at a centre-of-mass energy of 7 TeV at the LHC. Based on an integrated luminosity of 4.9 fb^-^1, the differential cross-section in the Z/@c^@?->e^+e^- channel is measured with the ATLAS detector as a function of the invariant mass, m_e_e, in the range 116
Resumo:
Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H --> gamma-gamma, H --> ZZ* --> 4 leptons and H --> WW --> 2 leptons + 2 neutrinos. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of 7 TeV and 8 TeV, corresponding to an integrated luminosity of about 25/fb. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined fits probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson.
Resumo:
The dynamics of isolated-photon plus jet production in pp collisions at a centre-of-mass energy of 7 TeV has been studied with the ATLAS detector at the LHC using an integrated luminosity of 37 pb^-^1. Measurements of isolated-photon plus jet bin-averaged cross sections are presented as functions of photon transverse energy, jet transverse momentum and jet rapidity. In addition, the bin-averaged cross sections as functions of the difference between the azimuthal angles of the photon and the jet, the photon-jet invariant mass and the scattering angle in the photon-jet centre-of-mass frame have been measured. Next-to-leading-order QCD calculations are compared to the measurements and provide a good description of the data, except for the case of the azimuthal opening angle.
Resumo:
This Letter describes a model-independent search for the production of new resonances in photon + jet events using 20 inverse fb of proton--proton LHC data recorded with the ATLAS detector at a centre-of-mass energy of s√ = 8 TeV. The photon + jet mass distribution is compared to a background model fit from data; no significant deviation from the background-only hypothesis is found. Limits are set at 95% credibility level on generic Gaussian-shaped signals and two benchmark phenomena beyond the Standard Model: non-thermal quantum black holes and excited quarks. Non-thermal quantum black holes are excluded below masses of 4.6 TeV and excited quarks are excluded below masses of 3.5 TeV.
Resumo:
A detailed microdosimetric characterization of the M. D. Anderson 42 MeV (p,Be) fast neutron beam was performed using the techniques of microdosimetry and a 1/2 inch diameter Rossi proportional counter. These measurements were performed at 5, 15, and 30 cm depths on the central axis, 3 cm inside, and 3 cm outside the field edge for 10 $\times$ 10 and 20 $\times$ 20 cm field sizes. Spectra were also measured at 5 and 15 cm depth on central axis for a 6 $\times$ 6 cm field size. Continuous slowing down approximation calculations were performed to model the nuclear processes that occur in the fast neutron beam. Irradiation of the CR-39 was performed using a tandem electrostatic accelerator for protons of 10, 6, and 3 MeV and alpha particles of 15, 10, and 7 MeV incident energy on target at angles of incidence from 0 to 85 degrees. The critical angle as well as track etch rate and normal incidence diameter versus linear energy transfer (LET) were obtained from these measurements. The bulk etch rate was also calculated from these measurements. Dose response of the material was studied, and the angular distribution of charged particles created by the fast neutron beam was measured with CR-39. The efficiency of CR-39 was calculated versus that of the Rossi chamber, and an algorithm was devised for derivation of LET spectra from the major and minor axis dimensions of the observed tracks. The CR-39 was irradiated in the same positions as the Rossi chamber, and the derived spectra were compared directly. ^