727 resultados para steel foundry
Resumo:
Experimental study on the long-term deformations of the fibre reinforced concrete. Steel and macro-synthetic fibers were used to evaluate the shrinkage, creep, mid-span deflection, cracking and rupture analysis of three different types of samples. At the end the main topics of ACI guidelines were analyzed in order to perform an overview of design.
Resumo:
Through the use of Cloud Foundry "stack" concept, a new isolation is provided to the application running on the PaaS. A new deployment feature that can easily scale on distributed system, both public and private clouds.
Resumo:
Studio dell'effetto della duttilità sul carico di collasso: il crollo di una copertura reticolare spaziale in acciaio causato dalla compresenza di un'ingente mancanza di resistenza e duttilità nei collegamenti delle aste e possibili stati coattivi. Il carico di collasso nel caso di strutture a bassa duttilità dipende dalla presenza di stati coattivi dovuti a imperfezioni di realizzazione o cedimenti vincolari della struttura in esercizio.
Resumo:
Il Cloud Computing è una realtà sempre più diffusa e discussa nel nostro periodo storico, ma probabilmente non è ancora chiaro a tutti di cosa si tratta e le potenzialità che possiede. Infatti, non esiste ancora una definizione univoca e condivisa e questo può creare confusione. Oggi le grandi compagnie nella comunità informatica spingono sempre di più per affermare i servizi Cloud a livello mondiale, non solo per le aziende del settore, ma anche per tutte le altre. Ed è così che le aziende di tutto il mondo si muovono per imparare e adottare questa nuova tecnologia, per spostare i loro centri dati e le loro applicazioni nel Cloud. Ma dove e quando nasce il Cloud Computing? Quali sono realmente i benefici per le aziende che adottano questa tecnologia? Questo è l'obiettivo della mia tesi: cercare di far chiarezza sulla sua definizione, indagare sulla sua nascita e fare un quadro economico del suo sviluppo, analizzando i benefici per le aziende e le opportunità offerte. Come caso di studio ho scelto la piattaforma Cloud Foundry perchè in questo momento è in forte espansione e sta facendo un grosso lavoro per cercare di rendere il suo prodotto uno standard per il Cloud Computing. Come esempio particolare di piattaforma basata su Cloud Foundry si parlerà di Bluemix, la piattaforma Cloud offerta da IBM, una delle più grandi aziende nel settore informatico.
Resumo:
Open web steel joists are designed in the United States following the governing specification published by the Steel Joist Institute. For compression members in joists, this specification employs an effective length factor, or K-factor, in confirming their adequacy. In most cases, these K-factors have been conservatively assumed equal to 1.0 for compression web members, regardless of the fact that intuition and limited experimental work indicate that smaller values could be justified. Given that smaller K-factors could result in more economical designs without a loss in safety, the research presented in this thesis aims to suggest procedures for obtaining more rational values. Three different methods for computing in-plane and out-of-plane K-factors are investigated, including (1) a hand calculation method based on the use of alignment charts, (2) computational critical load (eigenvalue) analyses using uniformly distributed loads, and (3) computational analyses using a compressive strain approach. The latter method is novel and allows for computing the individual buckling load of a specific member within a system, such as a joist. Four different joist configurations are investigated, including an 18K3, 28K10, and two variations of a 32LH06. Based on these methods and the very limited number of joists studied, it appears promising that in-plane and out-of-plane K-factors of 0.75 and 0.85, respectively, could be used in computing the flexural buckling strength of web members in routine steel joist design. Recommendations for future work, which include systematically investigating a wider range of joist configurations and connection restraint, are provided.
Resumo:
ASTM A529 carbon¿manganese steel angle specimens were joined by flash butt welding and the effects of varying process parameter settings on the resulting welds were investigated. The weld metal and heat affected zones were examined and tested using tensile testing, ultrasonic scanning, Rockwell hardness testing, optical microscopy, and scanning electron microscopy with energy dispersive spectroscopy in order to quantify the effect of process variables on weld quality. Statistical analysis of experimental tensile and ultrasonic scanning data highlighted the sensitivity of weld strength and the presence of weld zone inclusions and interfacial defects to the process factors of upset current, flashing time duration, and upset dimension. Subsequent microstructural analysis revealed various phases within the weld and heat affected zone, including acicular ferrite, Widmanstätten or side-plate ferrite, and grain boundary ferrite. Inspection of the fracture surfaces of multiple tensile specimens, with scanning electron microscopy, displayed evidence of brittle cleavage fracture within the weld zone for certain factor combinations. Test results also indicated that hardness was increased in the weld zone for all specimens, which can be attributed to the extensive deformation of the upset operation. The significance of weld process factor levels on microstructure, fracture characteristics, and weld zone strength was analyzed. The relationships between significant flash welding process variables and weld quality metrics as applied to ASTM A529-Grade 50 steel angle were formalized in empirical process models.
Resumo:
Cold-formed steel (CFS) combined with wood sheathing, such as oriented strand board (OSB), forms shear walls that can provide lateral resistance to seismic forces. The ability to accurately predict building deformations in damaged states under seismic excitations is a must for modern performance-based seismic design. However, few static or dynamic tests have been conducted on the non-linear behavior of CFS shear walls. Thus, the purpose of this research work is to provide and demonstrate a fastener-based computational model of CFS wall models that incorporates essential nonlinearities that may eventually lead to improvement of the current seismic design requirements. The approach is based on the understanding that complex interaction of the fasteners with the sheathing is an important factor in the non-linear behavior of the shear wall. The computational model consists of beam-column elements for the CFS framing and a rigid diaphragm for the sheathing. The framing and sheathing are connected with non-linear zero-length fastener elements to capture the OSB sheathing damage surrounding the fastener area. Employing computational programs such as OpenSees and MATLAB, 4 ft. x 9 ft., 8 ft. x 9 ft. and 12 ft. x 9 ft. shear wall models are created, and monotonic lateral forces are applied to the computer models. The output data are then compared and analyzed with the available results of physical testing. The results indicate that the OpenSees model can accurately capture the initial stiffness, strength and non-linear behavior of the shear walls.
Resumo:
Steel tubular cast-in-place pilings are used throughout the country for many different project types. These piles are a closed-end pipe with varying wall thicknesses and outer diameters, that are driven to depth and then the core is filled with concrete. These piles are typically used for smaller bridges, or secondary structures. Mostly the piling is designed based on a resistance based method which is a function of the soil properties of which the pile is driven through, however there is a structural capacity of these members that is considered to be the upper bound on the loading of the member. This structural capacity is given by the AASHTO LRFD (2010), with two methods. These two methods are based on a composite or non-composite section. Many state agencies and corporations use the non-composite equation because it is requires much less computation and is known to be conservative. However with the trends of the time, more and more structural elements are being investigated to determine ways to better understand the mechanics of the members, which could lead to more efficient and safer designs. In this project, a set of these piling are investigated. The way the cross section reacts to several different loading conditions, along with a more detailed observation of the material properties is considered as part of this research. The evaluation consisted of testing stub sections of pile with varying sizes (10-¾”, 12-¾”), wall thicknesses (0.375”, 0.5”), and testing methods (whole compression, composite compression, push through, core sampling). These stub sections were chosen as they would represent a similar bracing length to many different soils. In addition, a finite element model was developed using ANSYS to predict the strains from the testing of the pile cross sections. This model was able to simulate the strains from most of the loading conditions and sizes that were tested. The bond between the steel shell and the concrete core, along with the concrete strength through the depth of the cross section were some of the material properties of these sections that were investigated.
Resumo:
Ultra-high performance fiber reinforced concrete (UHPFRC) has arisen from the implementation of a variety of concrete engineering and materials science concepts developed over the last century. This material offers superior strength, serviceability, and durability over its conventional counterparts. One of the most important differences for UHPFRC over other concrete materials is its ability to resist fracture through the use of randomly dispersed discontinuous fibers and improvements to the fiber-matrix bond. Of particular interest is the materials ability to achieve higher loads after first crack, as well as its high fracture toughness. In this research, a study of the fracture behavior of UHPFRC with steel fibers was conducted to look at the effect of several parameters related to the fracture behavior and to develop a fracture model based on a non-linear curve fit of the data. To determine this, a series of three-point bending tests were performed on various single edge notched prisms (SENPs). Compression tests were also performed for quality assurance. Testing was conducted on specimens of different cross-sections, span/depth (S/D) ratios, curing regimes, ages, and fiber contents. By comparing the results from prisms of different sizes this study examines the weakening mechanism due to the size effect. Furthermore, by employing the concept of fracture energy it was possible to obtain a comparison of the fracture toughness and ductility. The model was determined based on a fit to P-w fracture curves, which was cross referenced for comparability to the results. Once obtained the model was then compared to the models proposed by the AFGC in the 2003 and to the ACI 544 model for conventional fiber reinforced concretes.
Resumo:
This paper presents some experimental data on the size and position of pipes steel ingots as exemp1ified by casting wax under various conditions and noting the size and location of the pipes formed. The results tend to show that the length of the pipe is decreased by: 1. Slow casting 2. By casting large end up instead of down 3. By retarding the cooling of the top
Resumo:
Many attempts have been made to improve iron and steel and their alloys by the addition of boron. The results obtained were not encouraging for the reason that the amount of boron used, generally from 0.2 to 2.0 per cent is altogether too high. This percentage of boron renders the product hard and brittle and of late the experiments with boron in this connection have been practically abandoned.