921 resultados para static tester
Resumo:
Poster presented at the First international Congress of CiiEM “From Basic Sciences to Clinical Research”, 27-28 November 2015, Egas Moniz, Caparica, Portugal.
Resumo:
All the structures designed by engineers are vulnerable to natural disasters including floods and earthquakes. The energy released during strong ground motions should be dissipated by structural elements. Before 1990’s, this energy was expected to be dissipated through the beams and columns which at the same time were a part of gravity-load-resisting system. However, the main disadvantage of this idea was that gravity-resisting-frame was not repairable. Hence, during 1990’s, the idea of designing passive energy dissipation systems, including dampers, emerged. At the beginning, main problem was lack of guidelines for passive energy dissipation systems. Although till 2000 many guidelines and procedures where published, yet most of them were based on complicated analysis which was not so convenient for engineers and practitioners. In order to solve this problem recently some alternative design methods are proposed including 1. Lopez Garcia (2001) simple procedure for optimal damper configuration in MDOF structures 2. Christopoulos and Filiatrault (2006) trial and error procedure 3. Silvestri et al. (2010) Five-Step Method. 4. Palermo et al. (2015) Direct Five-Step Method. 5. Palermo et al. (2016) Simplified Equivalent Static Analysis (ESA). In this study, effectiveness and differences between last three alternative methods have been evaluated.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Safety Bureau, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
"November 20, 1953"
Resumo:
"July 30, 1958"
Resumo:
Mode of access: Internet.
Resumo:
"Not for publication."
Resumo:
Photocopy of original: Berkeley : Structural Engineering Laboratory, University of California, 1974.
Resumo:
"SAND87-0891, R1 and RD."
Resumo:
v. 1. Methods of predicting structural temperatures due to aerodynamic heating, by A. H. Blessing.--v. 2. Aerodynamics, by J. R Batt.--v. 3. Experimental and analytical methods for the determination of thermally-affected wing deflectional behavior, by R. H. Gallagher.--v. 3. sup. Description and results of tests conducted to determine the thermally affected behavior of corrugated multiweb wing structures, by J. F. Quinn.