983 resultados para stable isotopic


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Stable isotopes are important tools for understanding the trophic roles of elasmobranchs. However, whether different tissues provide consistent stable isotope values within an individual are largely unknown. To address this, the relationships among carbon and nitrogen isotope values were quantified for blood, muscle, and fin from juvenile bull sharks (Carcharhinus leucas) and blood and fin from large tiger sharks (Galeocerdo cuvier) collected in two different ecosystems. We also investigated the relationship between shark size and the magnitude of differences in isotopic values between tissues. Isotope values were significantly positively correlated for all paired tissue comparisons, but R2 values were much higher for δ13C than for δ15N. Paired differences between isotopic values of tissues were relatively small but varied significantly with shark total length, suggesting that shark size can be an important factor influencing the magnitude of differences in isotope values of different tissues. For studies of juvenile sharks, care should be taken in using slow turnover tissues like muscle and fin, because they may retain a maternal signature for an extended time. Although correlations were relatively strong, results suggest that correction factors should be generated for the desired study species and may only allow coarse-scale comparisons between studies using different tissue types.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The potential use of stable carbon and nitrogen isotope ratios (d13C, d15N) of fish gills for studies on fish feeding ecology was evaluated by comparing the d13C and d15N of gill tissue with the more commonly used white muscle tissue. To account for the effect of lipid content on the d13C signatures, a study-specific lipid correction model based on C:N ratios was developed and applied to the bulk d13C data. For the majority of species in the study, we found no significant difference in d13C values between gill and muscle tissue after correction, but several species showed a small (0.3-1.4 per mil) depletion in 13C in white muscle compared to gill tissue. The average species difference in d15N between muscle and gill tissue ranged from -0.2 to 1.6 per mil for the different fish species with muscle tissue generally more enriched in 15N. The d13C values of muscle and gill were strongly linearly correlated (R**2 = 0.85) over a large isotopic range (13 per mil), suggesting that both tissues can be used to determine long-term feeding or migratory habits of fish. Muscle and gill tissue bulk d15N values were also strongly positively correlated (R**2= 0.76) but with a small difference between muscle and gill tissue. This difference indicates that the bulk d15N of the two tissue types may be influenced by different isotopic turnover rates or a different composition of amino acids.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

O18/O16 data on a depth profile of water samples from the Arctic Ocean reveal that near surface water is depleted in O18 by about 4 per mil, but water at depths greater than 350 meters reaches near normal open ocean water composition. The O18 profile very closely follows the salinity profile, with deltaO18 changing by about 0.8 per mil per 1 per mil salinity change. The results of deltaO18 measurements on the pelagic species Globigerina pachyderma from a composite core show that the deltaO18 value has not changed since the latter part of the last glacial period. This constancy we take to indicate that the temperature and the deltaO18 value of the water in which these foraminifera grew have not changed significantly since that time. Such a conclusion seems to imply that the present ice coverage in the Arctic Ocean has remained unchanged during the last 25,000 years. However, the deltaO18 value of benthonic foraminifera shows a shift of 1.2 per mil between the end of the last glacial period and the present warm period. This shift is consistent with the idea that the deep water mass of the Arctic Ocean is formed outside the Arctic basin. The information on the deltaO18 value of the benthonic foraminifera from the top of the core was used in conjunction with the data on deltaO18 and temperature of the bottom water to establish the constant in the empirical equation relating deltaO18 values to temperature for the preparation procedure used in our laboratory. Based on this calibration, the data confirm A. W. H. Bé's contention (personal communication, 1960) that G. pachyderma incorporates about one-half of its CaCO3 below 300 meters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Stable isotope ratios from tree rings and peatland mosses have become important proxies of past climate variations. We here compare recent stable carbon and oxygen isotope ratios in cellulose of tree rings from white spruce (Picea glauca), growing near the arctic tree line; and cellulose of Sphagnum fuscum stems, growing in a hummock of a subarctic peatland, in west-central Canada. Results show that carbon isotopes in S. fuscum correlate significantly with July temperatures over the past ~20 yr. The oxygen isotopes correlate with both summer temperature and precipitation. Analyses of the tree-ring isotopes revealed summer temperatures to be the main controlling factor for carbon isotope variations, whereas tree-ring oxygen isotope ratios are controlled by a combination of spring temperatures and precipitation totals. We also explore the potential of combining high-frequency (annual) climate signals derived from long tree-ring series with low-frequency (decadal to centennial) climate signals derived from the moss remains in peat deposits. This cross-archive comparison revealed no association between the oxygen isotopes, which likely results from the varying sensitivity of the archives to different seasons. For the carbon isotopes, common variance could be achieved through adjustments of the Sphagnum age model within dating error.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two haptophyte algae, Emiliania huxleyi and Gephyrocapsa oceanica, were cultured at different temperatures and salinities to investigate the impact of these factors on the hydrogen isotopic composition of long chain alkenones synthesized by these algae. Results showed that alkenones synthesized by G. oceanica were on average depleted in D by 30 compared to those of E. huxleyi when grown under similar temperature and salinity conditions. The fractionation factor, alpha alkenones-H2O, ranged from 0.760 to 0.815 for E. huxleyi and from 0.741 to 0.788 for G. oceanica. There was no significant correlation of alpha alkenones-H2O with temperature but a positive linear correlation was observed between alpha alkenones-H2O and salinity with ~3 change in fractionation per salinity unit and a negative correlation between alpha alkenones-H2O and growth rate. This suggests that both salinity and growth rate can have a substantial impact on the stable hydrogen isotopic composition of long chain alkenones in natural environments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Glycolipids are prominent constituents in the membranes of cells from all domains of life. For example, diglycosyl-glycerol dibiphytanyl glycerol tetraethers (2Gly-GDGTs) are associated with methanotrophic ANME-1 archaea and heterotrophic benthic archaea, two archaeal groups of global biogeochemical importance. The hydrophobic biphytane moieties of 2Gly-GDGTs from these two uncultivated archaeal groups exhibit distinct carbon isotopic compositions. To explore whether the isotopic compositions of the sugar headgroups provide additional information on the metabolism of their producers, we developed a procedure to analyze the d13C values of glycosidic headgroups. Successful determination was achieved by (1) monitoring the contamination from free sugars during lipid extraction and preparation, (2) optimizing the hydrolytic conditions for glycolipids, and (3) derivatizing the resulting sugars into aldononitrile acetate derivatives, which are stable enough to withstand a subsequent column purification step. First results of d13C values of sugars cleaved from 2Gly-GDGTs in two marine sediment samples, one containing predominantly ANME-1 archaea and the other benthic archaea, were obtained and compared with the d13C values of the corresponding biphytanes. In both samples the dominant sugar headgroups were enriched in 13C relative to the corresponding major biphytane. This 13C enrichment was significantly larger in the putative major glycolipids from ANME-1 archaea (~15 per mil) than in those from benthic archaea (<7 per mil). This method opens a new analytical window for the examination of carbon isotopic relationships between sugars and lipids in uncultivated organisms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Variations in sea surface temperature (SST), d18O of sea water (?18Ow), and salinity were reconstructed for the past 68 ka using a sediment core (AAS9/21) from the eastern Arabian Sea (EAS) in order to understand the changes in evaporation and precipitation associated with the monsoon system. The Mg/Ca-derived SST record varies by ~4°C; it shows that marine isotope stage (MIS) 4 was warmer than MIS 3, that the Last Glacial Maximum was 4°C cooler than the present, and that there was a 2°C increase within the Holocene. MIS 4 records higher d18Ow and salinity values than MIS 2, suggesting variable flow of low-salinity Bay of Bengal flow into the EAS during glacial periods. The transition from MIS 4 to MIS 3 was marked with a conspicuous shift from higher to lower d18Ow values, which reflects a decrease in the evaporation-precipitation budget in the EAS, perhaps due to the strengthening of southwest monsoon. Monsoon reconstructions based on d18Ow reveal that monsoon-driven precipitation was higher during MIS 3 and MIS 1 and was lower during MIS 2 and MIS 4. This is consistent with earlier monsoon reconstructions based on upwelling indices from the western Arabian Sea. However, the amplitude of monsoon fluctuations derived through upwelling indices and d18Ow varies significantly, which may indicate spatial variability of monsoon rainfall.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Atmospheric dust samples collected along a transect off the West African coast have been investigated for their lipid content and compound-specific stable carbon isotope compositions. The saturated hydrocarbon fractions of the organic solvent extracts consist mainly of long-chain n-alkanes derived from epicuticular wax coatings of terrestrial plants. Backward trajectories for each sampling day and location were calculated using a global atmospheric circulation model. The main atmospheric transport took place in the low-level trade-wind layer, except in the southern region, where long-range transport in the mid-troposphere occurred. Changes in the chain length distributions of the n-alkane homologous series are probably related to aridity, rather than temperature or vegetation type. The carbon preference of the leaf-wax n-alkanes shows significant variation, attributed to a variable contribution of fossil fuel- or marine-derived lipids. The effect of this nonwax contribution on the d13C values of the two dominant n-alkanes in the aerosols, n-C29 and n-C31 alkane, is, however, insignificant. Their d13C values were translated into a percentage of C4 vs. C3 plant type contribution, using a two-component mixing equation with isotopic end-member values from the literature. The data indicate that only regions with a predominant C4 type vegetation, i.e. the Sahara, the Sahel, and Gabon, supply C4 plant-derived lipids to dust organic matter. The stable carbon isotopic compositions of leaf-wax lipids in aerosols mainly reflect the modern vegetation type along their transport pathway. Wind abrasion of wax particles from leaf surfaces, enhanced by a sandblasting effect, is most probably the dominant process of terrigenous lipid contribution to aerosols.