759 resultados para square well
Resumo:
This study explored the reduction of adenosine triphosphate (ATP) levels in L-02 hepatocytes by hexavalent chromium (Cr(VI)) using chi-square analysis. Cells were treated with 2, 4, 8, 16, or 32 μM Cr(VI) for 12, 24, or 36 h. Methyl thiazolyl tetrazolium (MTT) experiments and measurements of intracellular ATP levels were performed by spectrophotometry or bioluminescence assays following Cr(VI) treatment. The chi-square test was used to determine the difference between cell survival rate and ATP levels. For the chi-square analysis, the results of the MTT or ATP experiments were transformed into a relative ratio with respect to the control (%). The relative ATP levels increased at 12 h, decreased at 24 h, and increased slightly again at 36 h following 4, 8, 16, 32 μM Cr(VI) treatment, corresponding to a "V-shaped" curve. Furthermore, the results of the chi-square analysis demonstrated a significant difference of the ATP level in the 32-μM Cr(VI) group (P < 0.05). The results suggest that the chi-square test can be applied to analyze the interference effects of Cr(VI) on ATP levels in L-02 hepatocytes. The decreased ATP levels at 24 h indicated disruption of mitochondrial energy metabolism and the slight increase of ATP levels at 36 h indicated partial recovery of mitochondrial function or activated glycolysis in L-02 hepatocytes.
Resumo:
Microscopic visualization, especially in transparent micromodels, can provide valuable information to understand the transport phenomena at pore scale in different process occurring in porous materials (food, timber, soils, etc.). Micromodels studies focus mainly on the observation of multi-phase flow, which presents a greater proximity to reality. The aim of this study was to study the process of flexography and its application in the manufacture of polyester resin transparent micromodels and its application to carrots. Materials used to implement a flexo station for micromodels construction were thermoregulated water bath, exposure chamber to UV light, photosensitive substance (photopolymer), RTV silicone polyester resin, and glass plates. In this paper, data on size distribution of a particular kind of carrot we used, and a transparent micromodel with square cross-section as well as a Log-normal pore size distribution with pore radii ranging from 10 to 110 µm (average of 22 µm and micromodel size of 10 × 10 cm) were built. Finally, it stresses that it has successfully implemented the protocol processing 2D polyester resin transparent micromodels.
Resumo:
The parents of premature infants, especially the mothers, are at increased risk for distress. Infants born prematurely are at risk for developmental problems. The aim of this study was to investigate whether the psychological well-being of both parents is associated with child development in very low birth weight (VLBW, ≤1500g) children. The burden of prematurity-related morbidity to the children and to the family was also assessed. A cohort of 201 VLBW infants born during 2001–2006 in the Turku University Hospital, Finland, and their parents were studied (I–IV). One study included a control group (n=166) of full-term infants (IV). The psychological well-being of the parents was evaluated by assessments of depressive symptoms, parenting stress, the sense of coherence and general family functioning. Cognitive, behavioral, and socio-emotional development, and the health-related quality of life (HRQoL) of the children were determined when the children were 2 to 8 years old. The psychological well-being of the parents was associated with the cognitive, behavioral and social development of the VLBW children. The VLBW infants with prematurity-related morbidities had a poorer HRQoL and the general functioning of the family was inferior compared to the control children and their families. 64.5% of the VLBW children survived without morbidities. Most of the VLBW children did not have significant behavior problems (93%), had normal social skills (63%), had no emotional problems (64%), and had no problems in executive functioning (62%). Only 3% of the surviving VLBW infants had significant cognitive delay. In conclusion, the depressive symptoms and stress of the parents can be risk factors for disadvantageous child development, while a strong sense of coherence can be protective. Parents of the premature children with developmental delays might also experience more depressive symptoms and stress than other parents. Prematurity-related morbidities were a burden to the VLBW child as well as to the family.
Resumo:
In this work we look at two different 1-dimensional quantum systems. The potentials for these systems are a linear potential in an infinite well and an inverted harmonic oscillator in an infinite well. We will solve the Schrödinger equation for both of these systems and get the energy eigenvalues and eigenfunctions. The solutions are obtained by using the boundary conditions and numerical methods. The motivation for our study comes from experimental background. For the linear potential we have two different boundary conditions. The first one is the so called normal boundary condition in which the wave function goes to zero on the edge of the well. The second condition is called derivative boundary condition in which the derivative of the wave function goes to zero on the edge of the well. The actual solutions are Airy functions. In the case of the inverted oscillator the solutions are parabolic cylinder functions and they are solved only using the normal boundary condition. Both of the potentials are compared with the particle in a box solutions. We will also present figures and tables from which we can see how the solutions look like. The similarities and differences with the particle in a box solution are also shown visually. The figures and calculations are done using mathematical software. We will also compare the linear potential to a case where the infinite wall is only on the left side. For this case we will also show graphical information of the different properties. With the inverted harmonic oscillator we will take a closer look at the quantum mechanical tunneling. We present some of the history of the quantum tunneling theory, its developers and finally we show the Feynman path integral theory. This theory enables us to get the instanton solutions. The instanton solutions are a way to look at the tunneling properties of the quantum system. The results are compared with the solutions of the double-well potential which is very similar to our case as a quantum system. The solutions are obtained using the same methods which makes the comparison relatively easy. All in all we consider and go through some of the stages of the quantum theory. We also look at the different ways to interpret the theory. We also present the special functions that are needed in our solutions, and look at the properties and different relations to other special functions. It is essential to notice that it is possible to use different mathematical formalisms to get the desired result. The quantum theory has been built for over one hundred years and it has different approaches. Different aspects make it possible to look at different things.
Resumo:
In this work we look at two different 1-dimensional quantum systems. The potentials for these systems are a linear potential in an infinite well and an inverted harmonic oscillator in an infinite well. We will solve the Schrödinger equation for both of these systems and get the energy eigenvalues and eigenfunctions. The solutions are obtained by using the boundary conditions and numerical methods. The motivation for our study comes from experimental background. For the linear potential we have two different boundary conditions. The first one is the so called normal boundary condition in which the wave function goes to zero on the edge of the well. The second condition is called derivative boundary condition in which the derivative of the wave function goes to zero on the edge of the well. The actual solutions are Airy functions. In the case of the inverted oscillator the solutions are parabolic cylinder functions and they are solved only using the normal boundary condition. Both of the potentials are compared with the particle in a box solutions. We will also present figures and tables from which we can see how the solutions look like. The similarities and differences with the particle in a box solution are also shown visually. The figures and calculations are done using mathematical software. We will also compare the linear potential to a case where the infinite wall is only on the left side. For this case we will also show graphical information of the different properties. With the inverted harmonic oscillator we will take a closer look at the quantum mechanical tunneling. We present some of the history of the quantum tunneling theory, its developers and finally we show the Feynman path integral theory. This theory enables us to get the instanton solutions. The instanton solutions are a way to look at the tunneling properties of the quantum system. The results are compared with the solutions of the double-well potential which is very similar to our case as a quantum system. The solutions are obtained using the same methods which makes the comparison relatively easy. All in all we consider and go through some of the stages of the quantum theory. We also look at the different ways to interpret the theory. We also present the special functions that are needed in our solutions, and look at the properties and different relations to other special functions. It is essential to notice that it is possible to use different mathematical formalisms to get the desired result. The quantum theory has been built for over one hundred years and it has different approaches. Different aspects make it possible to look at different things.
Resumo:
This thesis concerns the analysis of epidemic models. We adopt the Bayesian paradigm and develop suitable Markov Chain Monte Carlo (MCMC) algorithms. This is done by considering an Ebola outbreak in the Democratic Republic of Congo, former Zaïre, 1995 as a case of SEIR epidemic models. We model the Ebola epidemic deterministically using ODEs and stochastically through SDEs to take into account a possible bias in each compartment. Since the model has unknown parameters, we use different methods to estimate them such as least squares, maximum likelihood and MCMC. The motivation behind choosing MCMC over other existing methods in this thesis is that it has the ability to tackle complicated nonlinear problems with large number of parameters. First, in a deterministic Ebola model, we compute the likelihood function by sum of square of residuals method and estimate parameters using the LSQ and MCMC methods. We sample parameters and then use them to calculate the basic reproduction number and to study the disease-free equilibrium. From the sampled chain from the posterior, we test the convergence diagnostic and confirm the viability of the model. The results show that the Ebola model fits the observed onset data with high precision, and all the unknown model parameters are well identified. Second, we convert the ODE model into a SDE Ebola model. We compute the likelihood function using extended Kalman filter (EKF) and estimate parameters again. The motivation of using the SDE formulation here is to consider the impact of modelling errors. Moreover, the EKF approach allows us to formulate a filtered likelihood for the parameters of such a stochastic model. We use the MCMC procedure to attain the posterior distributions of the parameters of the SDE Ebola model drift and diffusion parts. In this thesis, we analyse two cases: (1) the model error covariance matrix of the dynamic noise is close to zero , i.e. only small stochasticity added into the model. The results are then similar to the ones got from deterministic Ebola model, even if methods of computing the likelihood function are different (2) the model error covariance matrix is different from zero, i.e. a considerable stochasticity is introduced into the Ebola model. This accounts for the situation where we would know that the model is not exact. As a results, we obtain parameter posteriors with larger variances. Consequently, the model predictions then show larger uncertainties, in accordance with the assumption of an incomplete model.
Resumo:
The purpose of this study was to clarify the connections of ethical leadership with the work-related well-being of employees. Additionally, the role of occupational health care in ethical leadership that promotes work-related well- being was analyzed. The objective of the study was to produce knowledge to support the development of ethical leadership and work-related well-being as well as to find ways for occupational health care to support organizations in these actions. The target groups of this study consisted of the managers (N=43) and employees (N=336) working in one organization in the Finnish energy industry. The population was studied in November 2014 using census. The data was gathered with two different web-based surveys containing structured and open questions. The survey for managers consisted of background questions and statements concerning ethical leadership, work-related well-being and occupational health care. The employee questionnaire consisted of questions about background and statements about work-related well-being and ethical leadership. The structured questions were analyzed with SPSS Statistical Program and the open questions using inductive content analysis. At least 80 % of the managers saw their actions as ethical in all but one part of ethical leadership. The work-related well-being of the employees was found best in the area of ability to work (91 % agreed) and lowest in the area of experience of ethical leadership (67 % agreed). The results showed a strong positive connection between ethical leadership and all the components of work- related well-being. The managers and employees were generally quite happy with the services of occupational health care but managers saw some problems with the collaboration with occupational health care. Several ways to improve work-related well-being and collaboration with occupational health care were found. One of the most important things was thought to be offering ways to maintain ability to work and making these actions visible. Investing in ethical leadership and work-related well-being is extremely important for the success of an organization and the societal benefits cannot be forgotten either. The role of occupational health care in promoting the health and well-being of employees is substantial. Occupational health care should offer managers more tools to recognize difficult situations and acting in them as well as encourage managers to seek help from occupational health care without hesitation in problematic situations of leadership.
Resumo:
The purpose of this study was to clarify the connections of ethical leadership with the work-related well-being of employees. Additionally, the role of occupational health care in ethical leadership that promotes work-related well- being was analyzed. The objective of the study was to produce knowledge to support the development of ethical leadership and work-related well-being as well as to find ways for occupational health care to support organizations in these actions. The target groups of this study consisted of the managers (N=43) and employees (N=336) working in one organization in the Finnish energy industry. The population was studied in November 2014 using census. The data was gathered with two different web-based surveys containing structured and open questions. The survey for managers consisted of background questions and statements concerning ethical leadership, work-related well-being and occupational health care. The employee questionnaire consisted of questions about background and statements about work-related well-being and ethical leadership. The structured questions were analyzed with SPSS Statistical Program and the open questions using inductive content analysis. At least 80 % of the managers saw their actions as ethical in all but one part of ethical leadership. The work-related well-being of the employees was found best in the area of ability to work (91 % agreed) and lowest in the area of experience of ethical leadership (67 % agreed). The results showed a strong positive connection between ethical leadership and all the components of work- related well-being. The managers and employees were generally quite happy with the services of occupational health care but managers saw some problems with the collaboration with occupational health care. Several ways to improve work-related well-being and collaboration with occupational health care were found. One of the most important things was thought to be offering ways to maintain ability to work and making these actions visible. Investing in ethical leadership and work-related well-being is extremely important for the success of an organization and the societal benefits cannot be forgotten either. The role of occupational health care in promoting the health and well-being of employees is substantial. Occupational health care should offer managers more tools to recognize difficult situations and acting in them as well as encourage managers to seek help from occupational health care without hesitation in problematic situations of leadership.
Resumo:
Research suggests that self-blame attributions are important in the process of adjustment to negative life events. Much of the research originates from JanofTBulman's (1979) theory regarding behavioural and characterological self-blame. She argued that attributing negative events to one's behaviour is adaptive because behavioural self-blame involves attributions to a modifiable source, which implies that a similar event can be avoided in the future. In contrast, attributing negative events to one's character is believed to be maladaptive because character is seen as relatively stable and unmodifiable. Unfortunately, the empirical literature does not show consistent relations between these two types of self-blame attributions and well-being as predicted by Janoff-Bulman. For this thesis, I proposed that one reason for this inconsistency is that Janoff-Bulman's assumption about the perceived modifiability of behavioural versus characterological causes is incorrect — people often dlo perceive character (as well as behaviour) to be modifiable. Sixty-two participants completed a questionnaire regarding a recent negative life event and its impact on their well-being. Consistent with my argument, I found that both behavioural and characterological self-blame attributions following a negative life event were seen as modifiable. As hypothesized, perceived modifiability of causes v^as related to well-being. For example, overall modifiability was related to greater coping efficacy, less social dysfunction, less severe depression, and greater positive affect; however. contrary to predictions, the relation between perceived modifiability of causes and wellbeing was not mediated by the perception that similar events could be avoided in the future. Individual differences in attributional style were also assessed in this study. An attributional style that tended to be more internal, stable, and specific was related to wellbeing as expected; however, neither the perceived modifiability of blame attributions nor the perceived avoidability of similar future events mediated this relation. Implications for professionals dealing with trauma victims and potential directions for future research are discussed.
Resumo:
The main objective of this research was to examine the relationship between surface electromyographic (SEMG) spike activity and force. The secondary objective was to determine to what extent subcutaneous tissue impacts the high frequency component of the signal, as well as, examining the relationship between measures of SEMG spike shape and their traditional time and frequency analogues. A total of96 participants (46 males and 50 females) ranging in age (18-35 years), generated three 5-second isometric step contractions at each force level of 40, 60, 80, and 100 percent of maximal voluntary contraction (MVC). The presentation of the contractions was balanced across subjects. The right arm of the subject was positioned in the sagittal plane, with the shoulder and elbow flexed to 90 degrees. The elbow rested on a support in a neutral position (mid pronation/mid supination) and placed within a wrist cuff, fastened below the styloid process. The wrist cuff was attached to a load cell (JR3 Inc., Woodland, CA) recording the force produced. Biceps brachii activity was monitored with a pair of Ag/AgCI recording electrodes (Grass F-E9, Astro-Med Inc., West Warwick, RI) placed in a bipolar configuration, with an interelectrode distance (lED) of 2cm distal to the motor point. Data analysis was performed on a I second window of data in the middle of the 5-second contraction. The results indicated that all spike shape measures exhibited significant (p < 0.01) differences as force increase~ from 40 to 100% MVC. The spike shape measures suggest that increased motor unit (MU) recruitment was responsible for increasing force up to 80% MVC. The results suggested that further increases in force relied on MU III synchronization. The results also revealed that the subcutaneous tissue (skin fold thickness) had no relationship (r = 0.02; P > 0.05) with the mean number of peaks per spike (MNPPS), which was the high frequency component of the signal. Mean spike amplitude (MSA) and mean spike frequency (MSF) were highly correlated with their traditional measures root mean square (RMS) and mean power frequency (MPF), respectively (r = 0.99; r = 0.97; P < 0.01).
Resumo:
A general derivation of the anharmonic coefficients for a periodic lattice invoking the special case of the central force interaction is presented. All of the contributions to mean square displacement (MSD) to order 14 perturbation theory are enumerated. A direct correspondance is found between the high temperature limit MSD and high temperature limit free energy contributions up to and including 0(14). This correspondance follows from the detailed derivation of some of the contributions to MSD. Numerical results are obtained for all the MSD contributions to 0(14) using the Lennard-Jones potential for the lattice constants and temperatures for which the Monte Carlo results were calculated by Heiser, Shukla and Cowley. The Peierls approximation is also employed in order to simplify the numerical evaluation of the MSD contributions. The numerical results indicate the convergence of the perturbation expansion up to 75% of the melting temperature of the solid (TM) for the exact calculation; however, a better agreement with the Monte Carlo results is not obtained when the total of all 14 contributions is added to the 12 perturbation theory results. Using Peierls approximation the expansion converges up to 45% of TM• The MSD contributions arising in the Green's function method of Shukla and Hubschle are derived and enumerated up to and including 0(18). The total MSD from these selected contributions is in excellent agreement with their results at all temperatures. Theoretical values of the recoilless fraction for krypton are calculated from the MSD contributions for both the Lennard-Jones and Aziz potentials. The agreement with experimental values is quite good.
Resumo:
We have presented a Green's function method for the calculation of the atomic mean square displacement (MSD) for an anharmonic Hamil toni an . This method effectively sums a whole class of anharmonic contributions to MSD in the perturbation expansion in the high temperature limit. Using this formalism we have calculated the MSD for a nearest neighbour fcc Lennard Jones solid. The results show an improvement over the lowest order perturbation theory results, the difference with Monte Carlo calculations at temperatures close to melting is reduced from 11% to 3%. We also calculated the MSD for the Alkali metals Nat K/ Cs where a sixth neighbour interaction potential derived from the pseudopotential theory was employed in the calculations. The MSD by this method increases by 2.5% to 3.5% over the respective perturbation theory results. The MSD was calculated for Aluminum where different pseudopotential functions and a phenomenological Morse potential were used. The results show that the pseudopotentials provide better agreement with experimental data than the Morse potential. An excellent agreement with experiment over the whole temperature range is achieved with the Harrison modified point-ion pseudopotential with Hubbard-Sham screening function. We have calculated the thermodynamic properties of solid Kr by minimizing the total energy consisting of static and vibrational components, employing different schemes: The quasiharmonic theory (QH), ).2 and).4 perturbation theory, all terms up to 0 ().4) of the improved self consistent phonon theory (ISC), the ring diagrams up to o ().4) (RING), the iteration scheme (ITER) derived from the Greens's function method and a scheme consisting of ITER plus the remaining contributions of 0 ().4) which are not included in ITER which we call E(FULL). We have calculated the lattice constant, the volume expansion, the isothermal and adiabatic bulk modulus, the specific heat at constant volume and at constant pressure, and the Gruneisen parameter from two different potential functions: Lennard-Jones and Aziz. The Aziz potential gives generally a better agreement with experimental data than the LJ potential for the QH, ).2, ).4 and E(FULL) schemes. When only a partial sum of the).4 diagrams is used in the calculations (e.g. RING and ISC) the LJ results are in better agreement with experiment. The iteration scheme brings a definitive improvement over the).2 PT for both potentials.
Resumo:
The atomic mean square displacement (MSD) and the phonon dispersion curves (PDC's) of a number of face-centred cubic (fcc) and body-centred cubic (bcc) materials have been calclllated from the quasiharmonic (QH) theory, the lowest order (A2 ) perturbation theory (PT) and a recently proposed Green's function (GF) method by Shukla and Hiibschle. The latter method includes certain anharmonic effects to all orders of anharmonicity. In order to determine the effect of the range of the interatomic interaction upon the anharmonic contributions to the MSD we have carried out our calculations for a Lennard-Jones (L-J) solid in the nearest-neighbour (NN) and next-nearest neighbour (NNN) approximations. These results can be presented in dimensionless units but if the NN and NNN results are to be compared with each other they must be converted to that of a real solid. When this is done for Xe, the QH MSD for the NN and NNN approximations are found to differ from each other by about 2%. For the A2 and GF results this difference amounts to 8% and 7% respectively. For the NN case we have also compared our PT results, which have been calculated exactly, with PT results calculated using a frequency-shift approximation. We conclude that this frequency-shift approximation is a poor approximation. We have calculated the MSD of five alkali metals, five bcc transition metals and seven fcc transition metals. The model potentials we have used include the Morse, modified Morse, and Rydberg potentials. In general the results obtained from the Green's function method are in the best agreement with experiment. However, this improvement is mostly qualitative and the values of MSD calculated from the Green's function method are not in much better agreement with the experimental data than those calculated from the QH theory. We have calculated the phonon dispersion curves (PDC's) of Na and Cu, using the 4 parameter modified Morse potential. In the case of Na, our results for the PDC's are in poor agreement with experiment. In the case of eu, the agreement between the tlleory and experiment is much better and in addition the results for the PDC's calclliated from the GF method are in better agreement with experiment that those obtained from the QH theory.