859 resultados para spleen injury
Resumo:
In this study we evaluated whether administration of stem cells of neural origin (neural precursor cells, NPCs) could be protective against renal ischemia-reperfusion injury (IRI). We hypothesized that stem cell outcomes are not tissue-specific and that NPCs can improve tissue damage through paracrine mechanisms, especially due to immunomodulation. To this end, Wistar rats (200-250 g) were submitted to 1-hour ischemia and treated with NPCs (4 x 10(6) cells/animal) at 4 h of reperfusion. To serve as controls, ischemic animals were treated with cerebellum homogenate harvested from adult rat brain. All groups were sacrificed at 24 h of reperfusion. NPCs were isolated from rat fetus telencephalon and cultured until neurosphere formation (7 days). Before administration, NPCs were labeled with carboxyfluorescein diacetate succinimydylester (CFSE). Kidneys were harvested for analysis of cytokine profile and macrophage infiltration. At 24 h, NPC treatment resulted in a significant reduction in serum creatinine (IRI + NPC 1.21 + 0.18 vs. IRI 3.33 + 0.14 and IRI + cerebellum 2.95 + 0.78mg/dl, p < 0.05) and acute tubular necrosis (IRI + NPC 46.0 + 2.4% vs. IRI 79.7 + 14.2%, p < 0.05). NPC-CFSE and glial fibrillary acidic protein (GFAP)-positive cells (astrocyte marker) were found exclusively in renal parenchyma, which also presented GFAP and SOX-2 (an embryonic neural stem cell marker) mRNA expression. NPC treatment resulted in lower renal proinflammatory IL1-beta and TNF-alpha expression and higher anti-inflammatory IL-4 and IL-10 transcription. NPC-treated animals also had less macrophage infiltration and decreased serum proinflammatory cytokines (IL-1 beta, TNF-alpha and INF-gamma). Our data suggested that NPC therapy improved renal function by influencing immunological responses. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
Ischemic-reperfusion injury (IRI) triggers an inflammatory response involving neutrophils/macrophages, lymphocytes and endothelial cells. Galectin-3 is a multi-functional lectin with a broad range of action such as promotion of neutrophil adhesion, induction of oxidative stress, mastocyte migration and degranulation, and production of pro-inflammatory cytokines. The aim of this study was evaluate the role of galectin-3 in the inflammation triggered by IRI. Galectin-3 knockout (KO) and wild type (wt) mice were subjected to 45 min of renal pedicle occlusion. Blood and kidney samples were collected at 6, 24, 48 and 120 h. Blood urea was analyzed enzymatically, while MCP-1, IL-6 and IL-1 beta were studied by real-time PCR. Reactive oxygen species (ROS) was investigated by flow cytometry. Morphometric analyses were performed at 6, 24, 48 and 120 h after reperfusion. Urea peaked at 24 h, being significantly lower in knockout animals (wt = 264.4 +/- 85.21 mg/dl vs. gal-3 KO = 123.74 +/- 29.64 mg/dl, P = 0.001). Galectin-3 knockout animals presented less acute tubular necrosis and a more prominent tubular regeneration when compared with controls concurrently with lower expression of MCP-1, IL-6, IL-1 beta, less macrophage infiltration and lower ROS production at early time points. Galectin-3 seems to play a role in renal IRI involving the secretion of macrophage-related chemokine, pro-inflammatory cytokines and ROS production.
Resumo:
Lipopolysaccharides from gram-negative bacteria are amongst the most common causative agents of acute lung injury, which is characterized by an inflammatory response, with cellular infiltration and the release of mediators/cytokines. There is evidence that bradykinin plays a role in lung inflammation in asthma but in other types of lung inflammation its role is less clear. In the present study we evaluated the role of the bradykinin B(1) receptor in acute lung injury caused by lipopolysaccharide inhalation and the mechanisms behind bradykinin actions participating in the inflammatory response. We found that in C57BI/6 mice, the bradykinin B(1) receptor expression was up-regulated 24 h after lipopolysaccharide inhalation. At this time, the number of cells and protein concentration were significantly increased in the bronchoalveolar lavage fluid and the mice developed airway hyperreactivity to methacholine. In addition, there was an increased expression of tumor necrosis factor-alpha, interleukin-1 beta and interferon-gamma and chemokines (monocytes chemotactic protein-1 and KC) in the bronchoalveolar lavage fluid and in the lung tissue. We then treated the mice with a bradykinin B, receptor antagonist, R-954 (Ac-Orn-[Oic(2), alpha-MePhe(5), D-beta Nal(7), Ile(8)]desArg(9)-bradykinin), 30 min after lipopolysaccharide administration. We observed that this treatment prevented the airway hyperreactivity as well as the increased cellular infiltration and protein content in the bronchoalveolar lavage fluid. Moreover, R-954 inhibited the expression of cytokines/chemokines. These results implicate bradykinin, acting through B(1) receptor, in the development of acute lung injury caused by lipopolysaccharide inhalation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
To evaluate the effect of sildenafil, administered prior to renal ischemia/reperfusion (I/R), by scintigraphy and histopathological evaluation in rats. Methods: Twenty-four rats were divided randomly into two groups. They received 0.1 ml of 99mTechnetium-etilenodicisteine intravenous, and a baseline (initial) renal scintigraphy was performed. The rats underwent 60 minutes of ischemia by left renal artery clamping. The right kidney was not manipulated. The sildenafil group (n=12) received orally 1 mg/kg of sildenafil suspension 60 minutes before ischemia. Treatment with saline 0.9% in the control group (n=12). Half of the rats was assessed after 24 hours and half after seven days I/R, with new renal scintigraphy to study differential function. After euthanasia, kidneys were removed and subjected to histopathological examination. For statistical evaluation, Student t and Mann-Whitney tests were used. Results: In the control group rats, the left kidneys had significant functional deficit, seven days after I/R, whose scintigraphic pattern was consistent with acute tubular necrosis, compared with the initial scintigraphy (p<0.05). Sildenafil treatment resulted in better differential function of the left kidneys 24h after reperfusion, compared with controls. Histopathologically, the left kidney of control rats (24 hours after I/R) showed a higher degree of cellular necrosis when compared with the sildenafil treated rats (p<0.05). Conclusion: Sildenafil had a protective effect in rat kidneys subjected to normothermic I/R, demonstrated by scintigraphy and histomorphometry
Resumo:
To investigate the role of β-(1-3)-D-glucan on 99mTc labelled Escherichia coli translocation and cytokines secretion in rats submitted to small bowel ischemia/reperfusion injury. Methods: Five groups (n=10 each) of Wistar rats were subjected to control(C), sham(S), group IR subjected to 45 min of bowel ischemia/60 min of reperfusion(I/R), and group I/R+glucan subjected to 45 min of bowel ischemia/60 min of reperfusion(I/R) and injected with 2mg/Kg intramuscular. Translocation of labelled bacteria to mesenteric lymph nodes, liver, spleen, lung and serum was determined using radioactivity/count and colony forming units/g(CFU/g). Serum TNFα, IL-1β, IL-6, IL-10 were measured by ELISA. Results: CFU/g and radioactivity/count were higher in I/R than in I/R+glucan rats. In C, S and S+glucan groups, bacteria and radioactivity/count were rarely detected. The I/R+glucan rats had enhancement of IL-10 and suppressed production of serum TNFα, IL-1β and, IL-6, compared to I/R untreated animals. Conclusion: The β-(1-3)-D-glucan modulated the production of pro-inflammatory and anti-inflammatory cytokines during bowel ischemia/reperfusion, and attenuated translocation of labelled bacteria
Resumo:
To investigate the role of β-(1-3)-D-glucan on 99mTc labelled Escherichia coli translocation and cytokines secretion in rats submitted to small bowel ischemia/reperfusion injury. Methods: Five groups (n=10 each) of Wistar rats were subjected to control(C), sham(S), group IR subjected to 45 min of bowel ischemia/60 min of reperfusion(I/R), and group I/R+glucan subjected to 45 min of bowel ischemia/60 min of reperfusion(I/R) and injected with 2mg/Kg intramuscular. Translocation of labelled bacteria to mesenteric lymph nodes, liver, spleen, lung and serum was determined using radioactivity/count and colony forming units/g(CFU/g). Serum TNFα, IL-1β, IL-6, IL-10 were measured by ELISA. Results: CFU/g and radioactivity/count were higher in I/R than in I/R+glucan rats. In C, S and S+glucan groups, bacteria and radioactivity/count were rarely detected. The I/R+glucan rats had enhancement of IL-10 and suppressed production of serum TNFα, IL-1β and, IL-6, compared to I/R untreated animals. Conclusion: The β-(1-3)-D-glucan modulated the production of pro-inflammatory and anti-inflammatory cytokines during bowel ischemia/reperfusion, and attenuated translocation of labelled bacteria
Resumo:
European corn borer (ECB) [Ostrinia nubilalis (Hubner)] (Lepidoptera: Crambidae) is known to infest Irish potato (Solanum tuberosum L.) but only causes economic damage during the first generation in East Coast potato producing areas. However, in Nebraska, second generation ECB infest potato plants during the bulking period and may reduce yield and/or potato quality. Experiments were conducted in 2001, 2002, and 2003 to examine physiological and yield effects of second generation ECB injury to potato in Nebraska. Pike, Atlantic, and three Frito Lay proprietary varieties (FL1867, FL1879, and FL1833) were used. Experimental plots were infested with four ECB egg masses per plant to simulate ECB infestation by second-generation larvae; controls received no egg masses. Photosynthetic rates, tuber weights, tuber size grades, solids, and fry quality were measured. Potato plants with ECB infestation had significantly reduced photosynthetic rates on ECB-infested stems and on uninfested stems on the same plant when larvae were in the fifth instar. When insects were in the fourth instar, photosynthetic rates were reduced only on ECB-infested stems. In 2001, ECB infestation reduced the average mass of large tubers and increased the amount of small tubers in FL1867 and FL1879. In 2002, significant yield reductions were not observed. Across both years, ECB-infested plots produced fewer large (65- to 100-mm diam.) tubers than control plots. Other tuber properties and chip qualities were unaffected. This study indicates that second generation ECB infestation of approximately 30% infested plants results in economic loss for some chipping varieties and affects tuber bulking. In contrast to east coast growers, Midwest potato farmers must be concerned with second generation ECB.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The combinations of temperature and time which can cause chilling injuries in avocados 'Geada', 'Quintal' and 'Fortuna' were determined. The binomial 4 degrees C/ 28 days was selected to determine the activity of peroxidase (POD), polyphenoloxidase (PPO), polygalacturonase (PG) and methylesterase pectin (PME). The respiratory activity was also evaluated. The fruits were stored at this condition until being transferred to ambient conditions (22 degrees C and 77% RH) until maturity, when they were compared to fruits stored permanently at this environment, after being cleaned (control). In the second part of this work, different hydrothermal treatments were tested to prevent or minimize chilling injuries. Avocados 'Geada', 'Quintal' and 'Fortuna' were treated at 38 degrees C for 0, 30, 60 and 90 minutes before storage at 4 degrees C for 28 days. It was observed that the activity of enzymes associated to browning, POD and PPO, and to maturation, PG and PME, had become greater in fruits stored at 4 degrees C, or when they were transferred to environmental conditions. Fruits subjected to refrigeration, after transferred to environment, presented lower respiratory peak intensity and it occurred earlier than the others. Treatments using 38 degrees C for 60 and 90 min minimized the symptoms of chilling injury in avocados 'Geada' while for 'Quintal' the most efficient was 38 degrees C for 60 min. In 'Fortuna' these treatments did not minimize the damage by cold.
Resumo:
Purpose: During general anesthesia, nitrous oxide (N2O) diffuses rapidly into the air-filled laryngeal mask airway (LMA) cuff, increasing intracuff pressure. There is no clear correlation between LMA intracuff pressure and pressure on the pharynx. We have studied the effects of high LMA intracuff pressures secondary to N2O on the pharyngeal mucosa of dogs.Methods: Sixteen mongrel dogs were randomly allocated to two groups: G1 (intracuff volume, 30 mL; n = 8) breathed a mixture of O-2 (1 L.min(-1)) and air (1 L.min(-1)) and G2 (intracuff volume, 30 mL; n=8) a mixture of O-2 (1 L.min(-1)) and N2O (1 L.min(-1)). Anesthesia was induced and maintained with pentobarbitone. LMA cuff pressure was measured at zero (control), 30, 60, 90 and 120 min after #4 LMA insertion. The dogs were sacrificed, and biopsy specimens from seven predetermined areas of the pharynx in contact with the LMA cuff were collected for light (LM) and scanning electron microscopic (SEM) examination by a blinded observer.Results: LMA intracuff pressure decreased with time in G1 (P < 0.001) and increased in G2 (P < 0.001). There was a significant difference between the groups (P < 0.001). In both groups, the LM study showed a normal epithelium covering the pharyngeal mucosa and mild congestion in the subepithelial layer There were no differences between the groups (P > 0.10) or among the areas sampled (P > 0.05). In both groups, the SEM study showed a normal pharyngeal mucosa with mild superficial desquamation. Few specimens in G1 and G2 showed more intense epithelial desquamation.Conclusion: High LMA intracuff pressures produced by N2O do not increase pharyngeal mucosal injury in dogs.
Resumo:
OBJETIVO: Avaliar o efeito da N-acetilcisteína na proteção renal contra lesão de isquemia/reperfusão, quando administrada logo após a indução anestésica, em ratos anestesiados com isoflurano. MÉTODOS: Dezoito ratos Wistar machos pesando mais que 300g foram anestesiados com isoflurano. A jugular interna direita e a carótida esquerda foram dissecadas e canuladas. Os animais foram distribuídos aleatoriamente em GAcetil, recebendo N-acetilcisteína por via intravenosa, 300mg/kg, e GIsot, solução salina. Foi realizada nefrectomia direita e clampeamento da artéria renal esquerda por 45 min. Os animais foram sacrificados após 48h, sendo colhidas amostras sanguíneas após a indução anestésica e ao sacrifício dos mesmos para avaliar a creatinina sérica. Realizou-se histologia renal. RESULTADOS: A variação da creatinina foi 2,33mg/dL ± 2,21 no GAcetil e 4,38mg/dL ± 2,13 no GIsot (p=0,074). Dois animais apresentaram necrose tubular intensa no GAcetil, comparados a cinco no GIsot. Apenas GAcetil apresentou animais livres de necrose tubular (dois) e degeneração tubular (um). CONCLUSÃO: Após isquemia/reperfusão renais, os ratos aos quais se administrou N-acetilcisteína apresentaram menor variação na creatinina sérica e lesões renais mais leves que o grupo controle.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose of reviewLung ultrasound at the bedside can provide accurate information on lung status in critically ill patients with acute respiratory distress syndrome.Recent findingsLung ultrasound can replace bedside chest radiography and lung computed tomography for assessment of pleural effusion, pneumothorax, alveolar- interstitial syndrome, lung consolidation, pulmonary abscess and lung recruitment/de-recruitment. It can also accurately determine the type of lung morphology at the bedside (focal or diffuse aeration loss), and therefore it is useful for optimizing positive end-expiratory pressure. The learning curve is brief, so most intensive care physicians will be able to use it after a few weeks of training.SummaryLung ultrasound is noninvasive, easily repeatable and allows assessment of changes in lung aeration induced by the various therapies. It is among the most promising bedside techniques for monitoring patients with acute respiratory distress syndrome.