989 resultados para spin-symmetry energy


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurements of spin correlation in top quark pair production are presented using data collected with the ATLAS detector at the LHC with proton-proton collisions at a center-of-mass energy of 7 TeV, corresponding to an integrated luminosity of 4.6  fb −1 . Events are selected in final states with two charged leptons and at least two jets and in final states with one charged lepton and at least four jets. Four different observables sensitive to different properties of the top quark pair production mechanism are used to extract the correlation between the top and antitop quark spins. Some of these observables are measured for the first time. The measurements are in good agreement with the Standard Model prediction at next-to-leading-order accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the real-time evolution of large open quantum spin systems in two spatial dimensions, whose dynamics is entirely driven by a dissipative coupling to the environment. We consider different dissipative processes and investigate the real-time evolution from an ordered phase of the Heisenberg or XY model towards a disordered phase at late times, disregarding unitary Hamiltonian dynamics. The corresponding Kossakowski-Lindblad equation is solved via an efficient cluster algorithm. We find that the symmetry of the dissipative process determines the time scales, which govern the approach towards a new equilibrium phase at late times. Most notably, we find a slow equilibration if the dissipative process conserves any of the magnetization Fourier modes. In these cases, the dynamics can be interpreted as a diffusion process of the conserved quantity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We work out the phenomenology of a model of supersymmetry breaking in the presence of a tiny (tunable) positive cosmological constant, proposed by the authors in arXiv:1403.1534. It utilizes a single chiral multiplet with a gauged shift symmetry that can be identified with the string dilaton (or an appropriate compactification modulus). The model is coupled to the MSSM, leading to calculable soft supersymmetry breaking masses and a distinct low energy phenomenology that allows to differentiate it from other models of supersymmetry breaking and mediation mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We calculate the anomalous dimensions of operators with large global charge J in certain strongly coupled conformal field theories in three dimensions, such as the O(2) model and the supersymmetric fixed point with a single chiral superfield and a W = Φ3 superpotential. Working in a 1/J expansion, we find that the large-J sector of both examples is controlled by a conformally invariant effective Lagrangian for a Goldstone boson of the global symmetry. For both these theories, we find that the lowest state with charge J is always a scalar operator whose dimension ΔJ satisfies the sum rule J2ΔJ−(J22+J4+316)ΔJ−1−(J22+J4+316)ΔJ+1=0.04067 up to corrections that vanish at large J . The spectrum of low-lying excited states is also calculable explcitly: for example, the second-lowest primary operator has spin two and dimension ΔJ+3√. In the supersymmetric case, the dimensions of all half-integer-spin operators lie above the dimensions of the integer-spin operators by a gap of order J+12. The propagation speeds of the Goldstone waves and heavy fermions are 12√ and ±12 times the speed of light, respectively. These values, including the negative one, are necessary for the consistent realization of the superconformal symmetry at large J.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The coastal deposits of Bonaire, Leeward Antilles, are among the most studied archives for extreme-wave events (EWEs) in the Caribbean. Here we present more than 400 electron spin resonance (ESR) and radiocarbon data on coarse-clast deposits from Bonaire's eastern and western coasts. The chronological data are compared to the occurrence and age of fine-grained extreme-wave deposits detected in lagoons and floodplains. Both approaches are aimed at the identification of EWEs, the differentiation between extraordinary storms and tsunamis, improving reconstructions of the coastal evolution, and establishing a geochronological framework for the events. Although the combination of different methods and archives contributes to a better understanding of the interplay of coastal and archive-related processes, insufficient separation, superimposition or burying of coarse-clast deposits and restricted dating accuracy limit the use of both fine-grained and coarse-clast geoarchives to unravel decadal- to centennial-scale events. At several locations, distinct landforms are attributed to different coastal flooding events interpreted to be of tsunamigenic origin. Coastal landforms on the western coast have significantly been influenced by (sub)-recent hurricanes, indicating that formation of the coarse-clast deposits on the eastern coast is likely to be related to past events of higher energy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

So far, no experimental data of the infrared and Raman spectra of 13C isotopologue of dimethyl ether are available. With the aim of providing some clues of its low-lying vibrational bands and with the hope of contributing in a next spectral analysis, a number of vibrational transition frequencies below 300 cm−1 of the infrared spectrum and around 400 cm−1 of the Raman spectrum have been predicted and their assignments were proposed. Calculations were carried out through an ab initio three dimensional potential energy surface based on a previously reported one for the most abundant dimethyl ether isotopologue (M. Villa et al., J. Phys. Chem. A 115 (2011) 13573). The potential function was vibrationally corrected and computed with a highly correlated CCSD(T) method involving the COC bending angle and the two large amplitude CH3 internal rotation degrees of freedom. Also, the Hamiltonian parameters could represent a support for the spectral characterization of this species. Although the computed vibrational term values are expected to be very accurate, an empirical adjustment of the Hamiltonian has been performed with the purpose of anticipating some workable corrections to any possible divergence of the vibrational frequencies. Also, the symmetry breaking derived from the isotopic substitution of 13C in the dimethyl ether was taken into account when the symmetrization procedure was applied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the purpose of assessing the absorption coefficients of quantum dot solar cells, symmetry considerations are introduced into a Hamiltonian whose eigenvalues are empirical. In this way, the proper transformation from the Hamiltonian's diagonalized form to the form that relates it with Γ-point exact solutions through k.p envelope functions is built accounting for symmetry. Forbidden transitions are thus determined reducing the calculation burden and permitting a thoughtful discussion of the possible options for this transformation. The agreement of this model with the measured external quantum efficiency of a prototype solar cell is found to be excellent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nuclear fusion cross-section is modified when the spins of the interacting nuclei are polarized. In the case of deuterium?tritium it has been theoretically predicted that the nuclear fusion cross-section could be increased by a factor d = 1.5 if all the nuclei were polarized. In inertial confinement fusion this would result in a modification of the required ignition conditions. Using numerical simulations it is found that the required hot-spot temperature and areal density can both be reduced by about 15% for a fully polarized nuclear fuel. Moreover, numerical simulations of a directly driven capsule show that the required laser power and energy to achieve a high gain scale as d-0.6 and d-0.4 respectively, while the maximum achievable energy gain scales as d0.9.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The last 2 decades have seen discoveries in highly excited states of atoms and molecules of phenomena that are qualitatively different from the “planetary” model of the atom, and the near-rigid model of molecules, characteristic of these systems in their low-energy states. A unified view is emerging in terms of approximate dynamical symmetry principles. Highly excited states of two-electron atoms display “molecular” behavior of a nonrigid linear structure undergoing collective rotation and vibration. Highly excited states of molecules described in the “standard molecular model” display normal mode couplings, which induce bifurcations on the route to molecular chaos. New approaches such as rigid–nonrigid correlation, vibrons, and quantum groups suggest a unified view of collective electronic motion in atoms and nuclear motion in molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To characterize the depression of metabolism in anhydrobiotes, the redox state of cytochromes and energy metabolism were studied during dehydration of soaked cowpea (Vigna unguiculata) cotyledons and pollens of Typha latifolia and Impatiens glandulifera. Between water contents (WC) of 1.0 and 0.6 g H2O/g dry weight (g/g), viscosity as measured by electron spin resonance spectroscopy increased from 0.15 to 0.27 poise. This initial water loss was accompanied by a 50% decrease in respiration rates, whereas the adenylate energy charge remained constant at 0.8, and cytochrome c oxidase (COX) remained fully oxidized. From WC of 0.6 to 0.2 g/g, viscosity increased exponentially. The adenylate energy charge declined to 0.4 in seeds and 0.2 in pollen, whereas COX became progressively reduced. At WC of less than 0.2 g/g, COX remained fully reduced, whereas respiration ceased. When dried under N2, COX remained 63% reduced in cotyledons until WC was 0.7 g/g and was fully reduced at 0.2 g/g. During drying under pure O2, the pattern of COX reduction was similar to that of air-dried tissues, although the maximum reduction was 70% in dried tissues. Thus, at WC of less than 0.6 g/g, the reduction of COX probably originates from a decreased O2 availability as a result of the increased viscosity and impeded diffusion. We suggest that viscosity is a valuable parameter to characterize the relation between desiccation and decrease in metabolism. The implications for desiccation tolerance are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent results have demonstrated that the spin trapping agent N-tert-butyl-alpha-phenylnitrone (PBN) reduces infarct size due to middle cerebral artery occlusion (MCAO), even when given after ischemia. The objective of the present study was to explore whether PBN influences recovery of energy metabolism. MCAO of 2-hr duration was induced in rats by an intraluminal filament technique. Brains were frozen in situ at the end of ischemia and after 1, 2, and 4 hr of recirculation. PBN was given 1 hr after recirculation. Neocortical focal and perifocal ("penumbra") areas were sampled for analyses of phosphocreatine (PCr), creatine, ATP, ADP, AMP, glycogen, glucose, and lactate. The penumbra showed a moderate-to-marked decrease and the focus showed a marked decrease in PCr and ATP concentrations, a decline in the sum of adenine nucleotides, near-depletion of glycogen, and an increase in lactate concentration after 2 hr of ischemia. Recirculation for 1 hr led to only a partial recovery of energy state, with little further improvement after 2 hr and signs of secondary deterioration after 4 hr, particularly in the focus. After 4 hr of recirculation, PBN-treated animals showed pronounced recovery of energy state, with ATP and lactate contents in both focus and penumbra approaching normal values. Although an effect of PBN on mitochondria cannot be excluded, the results suggest that PBN acts by preventing a gradual compromise of microcirculation. The results justify a reevaluation of current views on the pathophysiology of focal ischemic damage and suggest that a therapeutic window of many hours exists in stroke.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a massive equilibrium simulation of the three-dimensional Ising spin glass at low temperatures. The Janus special-purpose computer has allowed us to equilibrate, using parallel tempering, L = 32 lattices down to T ≈ 0.64Tc. We demonstrate the relevance of equilibrium finite-size simulations to understand experimental non-equilibrium spin glasses in the thermodynamical limit by establishing a time-length dictionary. We conclude that non-equilibrium experiments performed on a time scale of one hour can be matched with equilibrium results on L ≈ 110 lattices. A detailed investigation of the probability distribution functions of the spin and link overlap, as well as of their correlation functions, shows that Replica Symmetry Breaking is the appropriate theoretical framework for the physically relevant length scales. Besides, we improve over existing methodologies to ensure equilibration in parallel tempering simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce a general class of su(1|1) supersymmetric spin chains with long-range interactions which includes as particular cases the su(1|1) Inozemtsev (elliptic) and Haldane-Shastry chains, as well as the XX model. We show that this class of models can be fermionized with the help of the algebraic properties of the su(1|1) permutation operator and take advantage of this fact to analyze their quantum criticality when a chemical potential term is present in the Hamiltonian. We first study the low-energy excitations and the low-temperature behavior of the free energy, which coincides with that of a (1+1)-dimensional conformal field theory (CFT) with central charge c=1 when the chemical potential lies in the critical interval (0,E(π)), E(p) being the dispersion relation. We also analyze the von Neumann and Rényi ground state entanglement entropies, showing that they exhibit the logarithmic scaling with the size of the block of spins characteristic of a one-boson (1+1)-dimensional CFT. Our results thus show that the models under study are quantum critical when the chemical potential belongs to the critical interval, with central charge c=1. From the analysis of the fermion density at zero temperature, we also conclude that there is a quantum phase transition at both ends of the critical interval. This is further confirmed by the behavior of the fermion density at finite temperature, which is studied analytically (at low temperature), as well as numerically for the su(1|1) elliptic chain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have observed a large spin splitting between "spin" +1 and -1 heavy-hole excitons, having unbalanced populations, in undoped GaAs/AlAs quantum wells in the absence of any external magnetic field. Time-resolved photoluminescence spectroscopy, under excitation with circularly polarized light, reveals that, for high excitonic density and short times after the pulsed excitation, the emission from majority excitons lies above that of minority ones. The amount of the splitting, which can be as large as 50% of the binding energy, increases with excitonic density and presents a time evolution closely connected with the degree of polarization of the luminescence. Our results are interpreted on the light of a recently developed model, which shows that, while intraexcitonic exchange interaction is responsible for the spin relaxation processes, exciton-exciton interaction produces a breaking of the spin degeneracy in two-dimensional semiconductors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a study of the ferromagnetic phase of a multilayer digital ferromagnetic semiconductor in the mean-field and effective-mass approximations, we find the exchange interaction to have the dominant energy scale of the problem, effectively controlling the spatial distribution of the carrier spins in the digital ferromagnetic heterostructures. In the ferromagnetic phase, the majority-spin and minority-spin carriers tend to be in different regions of the space (spin separation). Hence, the charge distribution of carriers also changes noticeably from the ferromagnetic to the paramagnetic phase. An example of a design to exploit these phenomena is given here.