867 resultados para short term
Resumo:
Ocean acidification, the result of increased dissolution of carbon dioxide (CO2) in seawater, is a leading subject of current research. The effects of acidification on non-calcifying macroalgae are, however, still unclear. The current study reports two 1-month studies using two different macroalgae, the red alga Palmaria palmata (Rhodophyta) and the kelp Saccharina latissima (Phaeophyta), exposed to control (pHNBS = 8.04) and increased (pHNBS = 7.82) levels of CO2-induced seawater acidification. The impacts of both increased acidification and time of exposure on net primary production (NPP), respiration (R), dimethylsulphoniopropionate (DMSP) concentrations, and algal growth have been assessed. In P. palmata, although NPP significantly increased during the testing period, it significantly decreased with acidification, whereas R showed a significant decrease with acidification only. S. latissima significantly increased NPP with acidification but not with time, and significantly increased R with both acidification and time, suggesting a concomitant increase in gross primary production. The DMSP concentrations of both species remained unchanged by either acidification or through time during the experimental period. In contrast, algal growth differed markedly between the two experiments, in that P. palmata showed very little growth throughout the experiment, while S. latissima showed substantial growth during the course of the study, with the latter showing a significant difference between the acidified and control treatments. These two experiments suggest that the study species used here were resistant to a short-term exposure to ocean acidification, with some of the differences seen between species possibly linked to different nutrient concentrations between the experiments.
Resumo:
Variability in pH is a common occurrence in many aquatic environments, due to physical, chemical and biological processes. In coastal waters, lagoons, estuaries and inland waters, pH can change very rapidly (within seconds or hours) in addition to daily and seasonal changes. At the same time, progressive ocean acidification caused by anthropogenic CO2 emissions is superimposed on these spatial and temporal pH changes. Photosynthetic organisms are therefore unavoidably subject to significant pH variations at the cell surface. Whether this will affect their response to long-term ocean acidification is still unknown, nor is it known whether the short-term sensitivity to pH change is affected by the pCO2 to which the cells are acclimated. We posed the latter open question as our experimental hypothesis: Does acclimation to seawater acidification affect the response of phytoplankton to acute pH variations? The diatom Skeletonema costatum, commonly found in coastal and estuarine waters where short-term acute changes in pH frequently occur, was selected to test the hypothesis. Diatoms were grown at both 390 (pH 8.2, low CO2; LC) and 1000 (pH 7.9, high CO2; HC) µatm CO2 for at least 20 generations, and photosynthetic responses to short-term and acute changes in pH (between 8.2 and 7.6) were investigated. The effective quantum yield of LC-grown cells decreased by ca. 70% only when exposed to pH 7.6; this was not observed when exposed to pH 7.9 or 8.2. HC-grown cells did not show significant responses in any pH treatment. Non-photochemical quenching showed opposite trends. In general, our results indicate that while LC-grown cells are rather sensitive to acidification, HC-grown cells are relatively unresponsive in terms of photochemical performance.
Resumo:
This study examined the effects of long-term culture under altered conditions on the Antarctic sea urchin, Sterechinus neumayeri. Sterechinus neumayeri was cultured under the combined environmental stressors of lowered pH (-0.3 and -0.5 pH units) and increased temperature (+2 °C) for 2 years. This time-scale covered two full reproductive cycles in this species and analyses included studies on both adult metabolism and larval development. Adults took at least 6-8 months to acclimate to the altered conditions, but beyond this, there was no detectable effect of temperature or pH. Animals were spawned after 6 and 17 months exposure to altered conditions, with markedly different outcomes. At 6 months, the percentage hatching and larval survival rates were greatest in the animals kept at 0 °C under current pH conditions, whilst those under lowered pH and +2 °C performed significantly less well. After 17 months, performance was not significantly different across treatments, including controls. However, under the altered conditions urchins produced larger eggs compared with control animals. These data show that under long-term culture adult S. neumayeri appear to acclimate their metabolic and reproductive physiology to the combined stressors of altered pH and increased temperature, with relatively little measureable effect. They also emphasize the importance of long-term studies in evaluating effects of altered pH, particularly in slow developing marine species with long gonad maturation times, as the effects of altered conditions cannot be accurately evaluated unless gonads have fully matured under the new conditions.
Resumo:
Effects of ocean acidification on Emiliania huxleyi strain RCC 1216 (calcifying, diploid life-cycle stage) and RCC 1217 (non-calcifying, haploid life-cycle stage) were investigated by measuring growth, elemental composition, and production rates under different pCO2 levels (380 and 950 µatm). In these differently acclimated cells, the photosynthetic carbon source was assessed by a (14)C disequilibrium assay, conducted over a range of ecologically relevant pH values (7.9-8.7). In agreement with previous studies, we observed decreased calcification and stimulated biomass production in diploid cells under high pCO2, but no CO2-dependent changes in biomass production for haploid cells. In both life-cycle stages, the relative contributions of CO2 and HCO3 (-) uptake depended strongly on the assay pH. At pH values =< 8.1, cells preferentially used CO2 (>= 90 % CO2), whereas at pH values >= 8.3, cells progressively increased the fraction of HCO3 (-) uptake (~45 % CO2 at pH 8.7 in diploid cells; ~55 % CO2 at pH 8.5 in haploid cells). In contrast to the short-term effect of the assay pH, the pCO2 acclimation history had no significant effect on the carbon uptake behavior. A numerical sensitivity study confirmed that the pH-modification in the (14)C disequilibrium method yields reliable results, provided that model parameters (e.g., pH, temperature) are kept within typical measurement uncertainties. Our results demonstrate a high plasticity of E. huxleyi to rapidly adjust carbon acquisition to the external carbon supply and/or pH, and provide an explanation for the paradoxical observation of high CO2 sensitivity despite the apparently high HCO3 (-) usage seen in previous studies.
Resumo:
To identify the properties of taxa sensitive and resistant to ocean acidification (OA), we tested the hypothesis that coral reef calcifiers differ in their sensitivity to OA as predictable outcomes of functional group alliances determined by conspicuous traits. We contrasted functional groups of eight corals and eight calcifying algae defined by morphology in corals and algae, skeletal structure in corals, spatial location of calcification in algae, and growth rate in corals and algae. The responses of calcification to OA were unrelated to morphology and skeletal structure in corals; they were, however, affected by growth rate in corals and algae (fast calcifiers were more sensitive than slow calcifiers), and by the site of calcification and morphology in algae. Species assemblages characterized by fast growth, and for algae, also cell-wall calcification, are likely to be ecological losers in the future ocean. This shift in relative success will affect the relative and absolute species abundances as well as the goods and services provided by coral reefs.
Resumo:
Although copepods have been considered tolerant against the direct influence of the ocean acidification (OA) projected for the end of the century, some recent studies have challenged this view. Here, we have examined the direct impact of short-term exposure to a pCO2/pH level relevant for the year 2100 (pHNBS, control: 8.18, low pH: 7.78), on the physiological performance of two representative marine copepods: the calanoid Acartia grani and the cyclopoid Oithona davisae. Adults of both species, from laboratory cultures, were preconditioned for four consecutive days in algal suspensions (Akashiwo sanguinea) prepared with filtered sea water pre-adjusted to the targeted pH values via CO2 bubbling. We measured the feeding and respiratory activity and reproductive output of those pre-conditioned females. The largely unaffected fatty acid composition of the prey offered between OA treatments and controls supports the absence in the study of indirect OA effects (i.e. changes of food nutritional quality). Our results show no direct effect of acidification on the vital rates examined in either copepod species. Our findings are compared with results from previous short- and long-term manipulative experiments on other copepod species.
Resumo:
The present study examines how different pCO2 acclimations affect the CO2- and light-dependence of photophysiological processes and O2 fluxes in four Southern Ocean (SO) key phytoplankton species. We grew Chaetoceros debilis (Cleve), Pseudo-nitzschia subcurvata (Hasle), Fragilariopsis kerguelensis (O'Meara) and Phaeocystis antarctica (Karsten) under low (160 µatm) and high (1000 ?atm) pCO2. The CO2- and light-dependence of fluorescence parameters of photosystem II (PSII) were determined by means of a fluorescence induction relaxation system (FIRe). In all tested species, nonphotochemical quenching (NPQ) is the primary photoprotection strategy in response to short-term exposure to high light or low CO2 concentrations. In C. debilis and P. subcurvata, PSII connectivity (p) and functional absorption cross-sections of PSII in ambient light (sigma PSII') also contributed to photoprotection while changes in re-oxidation times of Qa acceptor (tQa) were more significant in F. kerguelensis. The latter was also the only species being responsive to high acclimation pCO2, as these cells had enhanced relative electron transport rates (rETRs) and sigma PSII' while tQa and p were reduced under short-term exposure to high irradiance. Low CO2-acclimated cells of F. kerguelensis and all pCO2 acclimations of C. debilis and P. subcurvata showed dynamic photoinhibition with increasing irradiance. To test for the role and presence of the Mehler reaction in C. debilis and P. subcurvata, the light-dependence of O2 fluxes was estimated using membrane inlet mass spectrometry (MIMS). Our results show that the Mehler reaction is absent in both species under the tested conditions. We also observed that dark respiration was strongly reduced under high pCO2 in C. debilis while it remained unaltered in P. subcurvata. Our study revealed species-specific differences in the photophysiological responses to pCO2, both on the acclimation as well as the short-term level.
Resumo:
Since marine phytoplankton play a vital role in stabilizing earth's climate by removing significant amount of atmospheric CO2, their responses to increasing CO2 levels are indeed vital to address. The responses of a natural phytoplankton community from the Qingdao coast (NW Yellow Sea, China) was studied under different CO2 levels in microcosms. HPLC pigment analysis revealed the presence of diatoms as a dominant microalgal group; however, members of chlorophytes, prasinophytes, cryptophytes and cyanophytes were also present. delta 13CPOM values indicated that the phytoplankton community probably utilized bicarbonate ions as dissolved inorganic carbon source through a carbon concentration mechanism (CCM) under low CO2 levels, and diffusive CO2 uptake increased upon the increase of external CO2 levels. Although, considerable increase in phytoplankton biomass was noticed in all CO2 treatments, CO2-induced effects were absent. Higher net nitrogen uptake under low CO2 levels could be related to the synthesis of CCM components. Flow cytometry analysis showed slight reduction in the abundance of Synechococcus and pico-eukaryotes under the high CO2 treatments. Diatoms did not show any negative impact in response to increasing CO2 levels; however, chlorophytes revealed a reverse tend. Heterotrophic bacterial count enhanced with increasing CO2 levels and indicated higher abundance of labile organic carbon. Thus, the present study indicates that any change in dissolved CO2 concentrations in this area may affect phytoplankton physiology and community structure and needs further long-term study.
Resumo:
The aim of the present study was to evaluate the influence of different light quality, especially ultraviolet radiation (UVR), on the dynamics of volatile halogenated organic compounds (VHOCs) at the sea surface. Short term experiments were conducted with floating gas-tight mesocosms of different optical qualities. Six halocarbons (CH3I, CHCl3, CH2Br2, CH2ClI, CHBr3 and CH2I2), known to be produced by phytoplankton, together with a variety of biological and environmental variables were measured in the coastal southern Baltic Sea and in the Raunefjord (North Sea). These experiments showed that ambient levels of UVR have no significant influence on VHOC dynamics in the natural systems. We attribute it to the low radiation doses that phytoplankton cells receive in a normal turbulent surface mixed layer. The VHOC concentrations were influenced by their production and removal processes, but they were not correlated with biological or environmental parameters investigated. Diatoms were most likely the dominant biogenic source of VHOCs in the Baltic Sea experiment, whereas in the Raunefjord experiment macroalgae probably contributed strongly to the production of VHOCs. The variable stable carbon isotope signatures (d13C values) of bromoform (CHBr3) also indicate that different autotrophic organisms were responsible for CHBr3 production in the two coastal environments. In the Raunefjord, despite strong daily variations in CHBr3 concentration, the carbon isotopic ratio was fairly stable with a mean value of -26 per mil. During the declining spring phytoplankton bloom in the Baltic Sea, the d13C values of CHBr3 were enriched in 13C and showed noticeable diurnal changes (-12 per mil ± 4). These results show that isotope signature analysis is a useful tool to study both the origin and dynamics of VHOCs in natural systems.
Resumo:
Warming of the world's oceans is predicted to have many negative effects on organisms as they have optimal thermal windows. In coastal waters, however, both temperatures and pCO2 (pH) exhibit diel variations, and biological performances are likely to be modulated by physical and chemical environmental changes. To understand how coastal zooplankton respond to the combined impacts of heat shock and increased pCO2, the benthic copepod Tigriopus japonicus were treated at temperatures of 24, 28, 32 and 36 °C to simulate natural coastal temperatures experienced in warming events, when acclimated in the short term to either ambient (LC, 390 µatm) or future CO2 (HC, 1000 µatm). HC and heat shock did not induce any mortality of T. japonicus, though respiration increased up to 32 °C before being depressed at 36 °C. Feeding rate peaked at 28 °C but did not differ between CO2 treatments. Expression of heat shock proteins (hsps mRNA) was positively related to temperature, with no significant differences between the CO2 concentrations. Nauplii production was not affected across all treatments. Our results demonstrate that T. japonicus responds more sensitively to heat shocks rather than to seawater acidification; however, ocean acidification may synergistically act with ocean warming to mediate the energy allocation of copepods.
Resumo:
Wind power time series usually show complex dynamics mainly due to non-linearities related to the wind physics and the power transformation process in wind farms. This article provides an approach to the incorporation of observed local variables (wind speed and direction) to model some of these effects by means of statistical models. To this end, a benchmarking between two different families of varying-coefficient models (regime-switching and conditional parametric models) is carried out. The case of the offshore wind farm of Horns Rev in Denmark has been considered. The analysis is focused on one-step ahead forecasting and a time series resolution of 10 min. It has been found that the local wind direction contributes to model some features of the prevailing winds, such as the impact of the wind direction on the wind variability, whereas the non-linearities related to the power transformation process can be introduced by considering the local wind speed. In both cases, conditional parametric models showed a better performance than the one achieved by the regime-switching strategy. The results attained reinforce the idea that each explanatory variable allows the modelling of different underlying effects in the dynamics of wind power time series.
Resumo:
El manejo pre-sacrificio es de vital importancia en acuicultura, ya que afecta tanto a las reacciones fisiológicas como a los procesos bioquímicos post mortem, y por tanto al bienestar y a la calidad del producto. El ayuno pre-sacrificio se lleva a cabo de forma habitual en acuicultura, ya que permite el vaciado del aparato digestivo de restos de alimento y heces, reduciendo de esta manera la carga bacteriana en el intestino y la dispersión de enzimas digestivos y potenciales patógenos a la carne. Sin embargo, la duración óptima de este ayuno sin que el pez sufra un estrés innecesario no está clara. Además, se sabe muy poco sobre la mejor hora del día para realizar el sacrificio, lo que a su vez está regido por los ritmos diarios de los parámetros fisiológicos de estrés. Finalmente, se sabe que la temperatura del agua juega un papel muy importante en la fisiología del estrés pero no se ha determinado su efecto en combinación con el ayuno. Además, las actuales recomendaciones en relación a la duración óptima del ayuno previo al sacrificio en peces no suelen considerar la temperatura del agua y se basan únicamente en días y no en grados día (ºC d). Se determinó el efecto del ayuno previo al sacrificio (1, 2 y 3 días, equivalente a 11,1-68,0 grados día) y la hora de sacrificio (08h00, 14h00 y 20h00) en trucha arco iris (Oncorhynchus mykiss) de tamaño comercial en cuatro pruebas usando diferentes temperaturas de agua (Prueba 1: 11,8 ºC; Prueba 2: 19,2 ºC; Prueba 3: 11,1 ºC; y Prueba 4: 22,7 ºC). Se midieron indicadores biométricos, hematológicos, metabólicos y de calidad de la carne. En cada prueba, los valores de los animales ayunados (n=90) se compararon con 90 animales control mantenidos bajo condiciones similares pero nos ayunados. Los resultados sugieren que el ayuno tuvo un efecto significativo sobre los indicadores biométricos. El coeficiente de condición en los animales ayunados fue menor que en los controles después de 2 días de ayuno. El vaciado del aparato digestivo se produjo durante las primeras 24 h de ayuno, encontrándose pequeñas cantidades de alimento después de 48 h. Por otra parte, este vaciado fue más rápido cuando las temperaturas fueron más altas. El peso del hígado de los animales ayunados fue menor y las diferencias entre truchas ayunadas y controles fueron más evidentes a medida que el vaciado del aparato digestivo fue más rápido. El efecto del ayuno hasta 3 días en los indicadores hematológicos no fue significativo. Los niveles de cortisol en plasma resultaron ser altos tanto en truchas ayunadas como en las alimentadas en todas las pruebas realizadas. La concentración media de glucosa varió entre pruebas pero mostró una tendencia a disminuir en animales ayunados a medida que el ayuno progresaba. En cualquier caso, parece que la temperatura del agua jugó un papel muy importante, ya que se encontraron concentraciones más altas durante los días 2 y 3 de ayuno en animales mantenidos a temperaturas más bajas previamente al sacrificio. Los altos niveles de lactato obtenidos en sangre parecen sugerir episodios de intensa actividad muscular pero no se pudo encontrar relación con el ayuno. De la misma manera, el nivel de hematocrito no mostró efecto alguno del ayuno y los leucocitos tendieron a ser más altos cuando los animales estaban menos estresados y cuando su condición corporal fue mayor. Finalmente, la disminución del peso del hígado (índice hepatosomático) en la Prueba 3 no se vio acompañada de una reducción del glucógeno hepático, lo que sugiere que las truchas emplearon una estrategia diferente para mantener constantes los niveles de glucosa durante el periodo de ayuno en esa prueba. En relación a la hora de sacrificio, se obtuvieron niveles más bajos de cortisol a las 20h00, lo que indica que las truchas estaban menos estresadas y que el manejo pre-sacrificio podría resultar menos estresante por la noche. Los niveles de hematocrito fueron también más bajos a las 20h00 pero solo con temperaturas más bajas, sugiriendo que las altas temperaturas incrementan el metabolismo. Ni el ayuno ni la hora de sacrificio tuvieron un efecto significativo sobre la evolución de la calidad de la carne durante los 3 días de almacenamiento. Por el contrario, el tiempo de almacenamiento sí que parece tener un efecto claro sobre los parámetros de calidad del producto final. Los niveles más bajos de pH se alcanzaron a las 24-48 h post mortem, con una lata variabilidad entre duraciones del ayuno (1, 2 y 3 días) en animales sacrificados a las 20h00, aunque no se pudo distinguir ningún patrón común. Por otra parte, la mayor rigidez asociada al rigor mortis se produjo a las 24 h del sacrificio. La capacidad de retención de agua se mostró muy estable durante el período de almacenamiento y parece ser independiente de los cambios en el pH. El parámetro L* de color se incrementó a medida que avanzaba el período de almacenamiento de la carne, mientras que los valores a* y b* no variaron en gran medida. En conclusión, basándose en los resultados hematológicos, el sacrificio a última hora del día parece tener un efecto menos negativo en el bienestar. De manera general, nuestros resultados sugieren que la trucha arco iris puede soportar un período de ayuno previo al sacrificio de hasta 3 días o 68 ºC d sin que su bienestar se vea seriamente comprometido. Es probable que con temperaturas más bajas las truchas pudieran ser ayunadas durante más tiempo sin ningún efecto negativo sobre su bienestar. En cualquier caso, se necesitan más estudios para determinar la relación entre la temperatura del agua y la duración óptima del ayuno en términos de pérdida de peso vivo y la disminución de los niveles de glucosa en sangre y otros indicadores metabólicos. SUMMARY Pre-slaughter handling in fish is important because it affects both physiological reactions and post mortem biochemical processes, and thus welfare and product quality. Pre-slaughter fasting is regularly carried out in aquaculture, as it empties the viscera of food and faeces, thus reducing the intestinal bacteria load and the spread of gut enzymes and potential pathogens to the flesh. However, it is unclear how long rainbow trout can be fasted before suffering unnecessary stress. In addition, very little is known about the best time of the day to slaughter fish, which may in turn be dictated by diurnal rhythms in physiological stress parameters. Water temperature is also known to play a very important role in stress physiology in fish but the combined effect with fasting is unclear. Current recommendations regarding the optimal duration of pre-slaughter fasting do not normally consider water temperature and are only based on days, not degree days (ºC d). The effects of short-term fasting prior to slaughter (1, 2 and 3 days, between 11.1 and 68.0 ºC days) and hour of slaughter (08h00, 14h00 and 20h00) were determined in commercial-sized rainbow trout (Oncorhynchus mykiss) over four trials at different water temperatures (TRIAL 1, 11.8 ºC; TRIAL 2, 19.2 ºC; TRIAL 3, 11.1 ºC; and TRIAL 4, 22.7 ºC). We measured biometric, haematological, metabolic and product quality indicators. In each trial, the values of fasted fish (n=90) were compared with 90 control fish kept under similar conditions but not fasted. Results show that fasting affected biometric indicators. The coefficient of condition in fasted trout was lower than controls 2 days after food deprivation. Gut emptying occurred within the first 24 h after the cessation of feeding, with small traces of digesta after 48 h. Gut emptying was faster at higher water temperatures. Liver weight decreased in food deprived fish and differences between fasted and fed trout were more evident when gut clearance was faster. The overall effect of fasting for up to three days on haematological indicators was small. Plasma cortisol levels were high in both fasted and fed fish in all trials. Plasma glucose response to fasting varied among trials, but it tended to be lower in fasted fish as the days of fasting increased. In any case, it seems that water temperature played a more important role, with higher concentrations at lower temperatures on days 2 and 3 after the cessation of feeding. Plasma lactate levels indicate moments of high muscular activity and were also high, but no variation related to fasting could be found. Haematocrit did not show any significant effect of fasting, but leucocytes tended to be higher when trout were less stressed and when their body condition was higher. Finally, the loss of liver weight was not accompanied by a decrease in liver glycogen (only measured in TRIAL 3), suggesting that a different strategy to maintain plasma glucose levels was used. Regarding the hour of slaughter, lower cortisol levels were found at 20h00, suggesting that trout were less stressed later in the day and that pre-slaughter handling may be less stressful at night. Haematocrit levels were also lower at 20h00 but only at lower temperatures, indicating that higher temperatures increase metabolism. Neither fasting nor the hour of slaughter had a significant effect on the evolution of meat quality during 3 days of storage. In contrast, storage time seemed to have a more important effect on meat quality parameters. The lowest pH was reached 24-48 h post mortem, with a higher variability among fasting durations at 20h00, although no clear pattern could be discerned. Maximum stiffening from rigor mortis occurred after 24 h. The water holding capacity was very stable throughout storage and seemed to be independent of pH changes. Meat lightness (L*) slightly increased during storage and a* and b*-values were relatively stable. In conclusion, based on the haematological results, slaughtering at night may have less of a negative effect on welfare than at other times of the day. Overall, our results suggest that rainbow trout can cope well with fasting up to three days or 68 ºC d prior to slaughter and that their welfare is therefore not seriously compromised. At low water temperatures, trout could probably be fasted for longer periods without negative effects on welfare but more research is needed to determine the relationship between water temperature and days of fasting in terms of loss of live weight and the decrease in plasma glucose and other metabolic indicators.
Resumo:
La predicción de energía eólica ha desempeñado en la última década un papel fundamental en el aprovechamiento de este recurso renovable, ya que permite reducir el impacto que tiene la naturaleza fluctuante del viento en la actividad de diversos agentes implicados en su integración, tales como el operador del sistema o los agentes del mercado eléctrico. Los altos niveles de penetración eólica alcanzados recientemente por algunos países han puesto de manifiesto la necesidad de mejorar las predicciones durante eventos en los que se experimenta una variación importante de la potencia generada por un parque o un conjunto de ellos en un tiempo relativamente corto (del orden de unas pocas horas). Estos eventos, conocidos como rampas, no tienen una única causa, ya que pueden estar motivados por procesos meteorológicos que se dan en muy diferentes escalas espacio-temporales, desde el paso de grandes frentes en la macroescala a procesos convectivos locales como tormentas. Además, el propio proceso de conversión del viento en energía eléctrica juega un papel relevante en la ocurrencia de rampas debido, entre otros factores, a la relación no lineal que impone la curva de potencia del aerogenerador, la desalineación de la máquina con respecto al viento y la interacción aerodinámica entre aerogeneradores. En este trabajo se aborda la aplicación de modelos estadísticos a la predicción de rampas a muy corto plazo. Además, se investiga la relación de este tipo de eventos con procesos atmosféricos en la macroescala. Los modelos se emplean para generar predicciones de punto a partir del modelado estocástico de una serie temporal de potencia generada por un parque eólico. Los horizontes de predicción considerados van de una a seis horas. Como primer paso, se ha elaborado una metodología para caracterizar rampas en series temporales. La denominada función-rampa está basada en la transformada wavelet y proporciona un índice en cada paso temporal. Este índice caracteriza la intensidad de rampa en base a los gradientes de potencia experimentados en un rango determinado de escalas temporales. Se han implementado tres tipos de modelos predictivos de cara a evaluar el papel que juega la complejidad de un modelo en su desempeño: modelos lineales autorregresivos (AR), modelos de coeficientes variables (VCMs) y modelos basado en redes neuronales (ANNs). Los modelos se han entrenado en base a la minimización del error cuadrático medio y la configuración de cada uno de ellos se ha determinado mediante validación cruzada. De cara a analizar la contribución del estado macroescalar de la atmósfera en la predicción de rampas, se ha propuesto una metodología que permite extraer, a partir de las salidas de modelos meteorológicos, información relevante para explicar la ocurrencia de estos eventos. La metodología se basa en el análisis de componentes principales (PCA) para la síntesis de la datos de la atmósfera y en el uso de la información mutua (MI) para estimar la dependencia no lineal entre dos señales. Esta metodología se ha aplicado a datos de reanálisis generados con un modelo de circulación general (GCM) de cara a generar variables exógenas que posteriormente se han introducido en los modelos predictivos. Los casos de estudio considerados corresponden a dos parques eólicos ubicados en España. Los resultados muestran que el modelado de la serie de potencias permitió una mejora notable con respecto al modelo predictivo de referencia (la persistencia) y que al añadir información de la macroescala se obtuvieron mejoras adicionales del mismo orden. Estas mejoras resultaron mayores para el caso de rampas de bajada. Los resultados también indican distintos grados de conexión entre la macroescala y la ocurrencia de rampas en los dos parques considerados. Abstract One of the main drawbacks of wind energy is that it exhibits intermittent generation greatly depending on environmental conditions. Wind power forecasting has proven to be an effective tool for facilitating wind power integration from both the technical and the economical perspective. Indeed, system operators and energy traders benefit from the use of forecasting techniques, because the reduction of the inherent uncertainty of wind power allows them the adoption of optimal decisions. Wind power integration imposes new challenges as higher wind penetration levels are attained. Wind power ramp forecasting is an example of such a recent topic of interest. The term ramp makes reference to a large and rapid variation (1-4 hours) observed in the wind power output of a wind farm or portfolio. Ramp events can be motivated by a broad number of meteorological processes that occur at different time/spatial scales, from the passage of large-scale frontal systems to local processes such as thunderstorms and thermally-driven flows. Ramp events may also be conditioned by features related to the wind-to-power conversion process, such as yaw misalignment, the wind turbine shut-down and the aerodynamic interaction between wind turbines of a wind farm (wake effect). This work is devoted to wind power ramp forecasting, with special focus on the connection between the global scale and ramp events observed at the wind farm level. The framework of this study is the point-forecasting approach. Time series based models were implemented for very short-term prediction, this being characterised by prediction horizons up to six hours ahead. As a first step, a methodology to characterise ramps within a wind power time series was proposed. The so-called ramp function is based on the wavelet transform and it provides a continuous index related to the ramp intensity at each time step. The underlying idea is that ramps are characterised by high power output gradients evaluated under different time scales. A number of state-of-the-art time series based models were considered, namely linear autoregressive (AR) models, varying-coefficient models (VCMs) and artificial neural networks (ANNs). This allowed us to gain insights into how the complexity of the model contributes to the accuracy of the wind power time series modelling. The models were trained in base of a mean squared error criterion and the final set-up of each model was determined through cross-validation techniques. In order to investigate the contribution of the global scale into wind power ramp forecasting, a methodological proposal to identify features in atmospheric raw data that are relevant for explaining wind power ramp events was presented. The proposed methodology is based on two techniques: principal component analysis (PCA) for atmospheric data compression and mutual information (MI) for assessing non-linear dependence between variables. The methodology was applied to reanalysis data generated with a general circulation model (GCM). This allowed for the elaboration of explanatory variables meaningful for ramp forecasting that were utilized as exogenous variables by the forecasting models. The study covered two wind farms located in Spain. All the models outperformed the reference model (the persistence) during both ramp and non-ramp situations. Adding atmospheric information had a noticeable impact on the forecasting performance, specially during ramp-down events. Results also suggested different levels of connection between the ramp occurrence at the wind farm level and the global scale.