853 resultados para sheep milk
Resumo:
Foods derived from animals are an important source of nutrients in the diet but there is considerable uncertainty about whether or not these foods contribute to increased risk of various chronic diseases. For milk in particular there appears to be an enormous mismatch between both the advice given on milk/dairy foods items by various authorities and public perceptions of harm from the consumption of milk and dairy products, and the evidence from long-term prospective cohort studies. Such studies provide convincing evidence that increased consumption of milk can lead to reductions in the risk of vascular disease and possibly some cancers and of an overall survival advantage from the consumption of milk, although the relative effect of milk products is unclear. Accordingly, simply reducing milk consumption in order to reduce saturated fatty acid (SFA) intake is not likely to produce benefits overall though the production of dairy products with reduced SFA contents is likely to be helpful. For red meat there is no evidence of increased risk of vascular diseases though processed meat appears to increase the risk substantially. There is still conflicting and inconsistent evidence on the relationship between consumption of red meat and the development of colorectal cancer, but this topic should not be ignored. Likewise, the role of poultry meat and its products as sources of dietary fat and fatty acids is not fully clear. There is concern about the likely increase in the prevalence of dementia but there are few data on the possible benefits or risks from milk and meat consumption. The future role of animal nutrition in creating foods closer to the optimum composition for long-term human health will be increasingly important. Overall, the case for increased milk consumption seems convincing, although the case for high-fat dairy products and red meat is not. Processed meat products do seem to have negative effects on long-term health and although more research is required, these effects do need to be put into the context of other risk factors to long-term health such as obesity, smoking and alcohol consumption.
Resumo:
This paper reports effects of chestnut and mimosa tannins on N utilisation in sheep. Tannins were added to grass either at ensilage or incorporated into grass silage at feeding. The study used an 8 × 5 incomplete Latin Square design with eight mature wether sheep and five 21-day periods. Tannin additions reduced in vivo apparent digestibilities of dry matter (DM), organic matter (OM) and neutral detergent fibre (aNDFom) compared with the untreated control silage (P<0.001). Reductions ranged from 7.6% for DM to 8.5% for aNDFom. Chestnut compared to mimosa tannin silages produced higher values for DM intake (734 g/day versus 625 g/day) and in vivo digestibility for DM, OM and aNDFom (0.66, 0.68 and 0.69 versus 0.61, 0.63 and 0.62; P<0.001). A substantial shift occurred in the pattern of N excretion in sheep fed the tannin versus control silages. As a proportion of daily N intake, urinary N losses were lower (56.4 g/100 g N versus 65.1 g/100 g N intake) and faecal N losses were higher (40.2 g/100 g N versus 29.8 g/100 g N intake) for sheep fed the tannin silages compared with those fed the control grass silage (P<0.001). Nitrogen intake was higher in sheep fed the chestnut compared to mimosa tannin silages (16.2 g/day versus 13.4 g/day; P<0.001), reflecting the lower DM intake of sheep fed the mimosa silages. However, faecal N loss was lower for chestnut compared to mimosa tannin silage fed sheep (38.2 g/100 g N versus 42.1 g/100 g N intake; P<0.01), resulting in higher N retentions with the chestnut compared to the mimosa silage fed sheep (5.49 g/100 g N versus 1.38 g/100 g N intake). Faecal N losses were also higher when tannins were added during ensiling rather than at feeding (P<0.05). Although there was no overall effect of tannins on N retention in mature wether sheep, it is likely that productive ruminants with higher protein requirements would retain more N from silages containing chestnut tannins. Tannins added externally to grass silages may generate some benefits on N utilisation and environmental N excretions in sheep fed the silages.
Resumo:
This study focused on effects of structure, content and biological activity of condensed tannins (CT) in leaves, stems and whole plant of sainfoin (Onobrychis viciifolia) on its in vivo and in situ digestive characteristics in sheep. Sainfoin was studied as fresh forage during the first vegetation cycle at two phenological stages (i.e., end of flowering and green seeds) and during the second vegetation cycle (i.e., start of flowering). The feeding experiment used 12 sheep; with six dosed, through the rumen cannula, with polyethylene glycol (PEG) to neutralise CT effects. Organic matter digestibility (OMD), total tract N disappearance and N balance were measured in sheep fed the whole plant. The residues of dry matter (DM) and N from nylon bags suspended in the rumen were determined on leaves and stems. Intestinal digestibility was measured using other, intestinally fistulated sheep. PEG addition and vegetation cycle increased total tract N digestibility (P<0.001) but PEG affected OMD only at the end of flowering. PEG inactivated the CT and increased urinary N excretion (P<0.05) but this was offset by lower faecal N excretion (P<0.001). Feeding sainfoin can be used to alter the form of excreted N (i.e., urine vs faeces) and thus potentially reduce environmental N pollution without affecting body N retention. Kinetic studies of total N, ammonia N (NH3-N) and volatile fatty acids (VFA) in rumen fluid were made before and 1.5, 3 and 6 h after feeding. Sainfoin CT decreased rumen fluid soluble N (P<0.05) and NH3-N (P<0.01). Ruminal N disappearance (DisN) of leaves or stems was lower in the presence of active CT compared to PEG-inactivated CT (P<0.001) for both vegetation cycles. PEG also increased intestinal digestibility (P<0.05) of leaves and stems. Leaves had lower ruminal DisN, but higher N disappearing from intestine than stems. The biological activity and content of CT in the whole plant decreased as phenological stage increased. Prodelphinidin:procyanidin (PD:PC) ratios of leaves varied with vegetation cycle and phenological stage. The molecular size of CT in the whole plant, as indicated by their mean degree of polymerisation (mDP), was lowest at the start of flowering and coincided with the higher biological activity and content of CT.
Resumo:
The efficiency of energy utilisation in cattle is a determinant of the profitability of milk and beef production, as well as their environmental impact. At an animal level, meat and milk production by ruminants is less efficient than pig and poultry production, in part due to lower digestibility of forages compared with grains. However, when compared on the basis of human-edible inputs, the ruminant has a clear efficiency advantage. There has been recent interest in feed conversion efficiency (FCE) in dairy cattle and residual feed intake, an indicator of FCE, in beef cattle. Variation between animals in FCE may have genetic components, allowing selection for animals with greater efficiency and reduced environmental impact. A major source of variation in FCE is feed digestibility, and thus approaches that improve digestibility should improve FCE if rumen function is not disrupted. Methane represents a substantial loss of digestible energy from rations. Major determinants of methane emission are the amount of feed consumed and the proportions of forage and concentrates fed. In addition, feeding fat has long been known to reduce methane emission. A myriad of other supplements and additives are currently being investigated as mitigators of methane emission, but in many cases compounds effective in sheep are ineffective in lactating dairy cows. Ultimately, the adoption of ‘best practice’ in diet formulation and management may be the most effective option for reducing methane. In assessing the efficiency of energy use for milk and meat production by cattle, and their environmental impact, it is imperative that comparisons be made at a systems level, and that the wider social and economic implications of mitigation policy are considered.
Resumo:
An unknown Gram-positive rod-shaped bacterium was isolated from skin scrapings from the infected head of a sheep and subjected to a polyphasic taxonomic analysis. Chemical analysis revealed the presence of straight-chain and monounsaturated fatty acids and short-chain (C32-C36) mycolic acids consistent with the genus Corynebacterium. Comparative 16S rRNA gene sequencing confirmed that the unknown rod was a member of the genus Corynebacterium, with the organism forming a distinct sub-line and displaying greater than 3% sequence divergence with established species. The unknown Corynebacterium isolate was readily distinguished from recognized species of the genus by biochemical tests and electrophoretic analysis of whole-cell proteins. Based on phylogenetic and phenotypic evidence, it is proposed that the unknown bacterium from a sheep be classified in the genus Corynebacterium, as Corynebacterium capitovis sp. nov. The type strain of Corynebacterium capitovis is CCUG 39779T (= CIP 106739T).
Resumo:
Seven strains of an unknown Gram-positive catalase-negative chain-forming coccus-shaped organism isolated from clinical specimens from sheep were characterized by phenotypic and molecular taxonomic methods. Comparative 16S rRNA gene sequencing studies demonstrated that the bacterium represents a new sub-line within the genus Streptococcus. The unknown bacterium was readily distinguished from recognized streptococcal species by biochemical tests and electrophoretic analysis of whole-cell proteins. Based on phylogenetic and phenotypic evidence, it is proposed that the unknown bacterium be classified as Streptococcus ovis sp. nov. The type strain of Streptococcus ovis is CCUG 39485T (= LMG 19174T).
Resumo:
Commensal bacteria, including some species of lactobacilli commonly present in human breast milk, appear to colonize the neonatal gut and contribute to protection against infant infections, suggesting that lactobacilli could potentially modulate immunity. In this study, we evaluated the potential of two Lactobacillus strains isolated from human milk to modulate the activation and cytokine profile of peripheral blood mononuclear cell (PBMC) subsets in vitro. Moreover, these effects were compared to the same probiotic species of non-milk origin. Lactobacillus salivarius CECT5713 and Lactobacillus fermentum CECT5716 at 105, 106 and 107 bacteria/mL were co-cultured with PBMC (106/mL) from 8 healthy donors for 24 h. Activation status (CD69 and CD25 expressions) of natural killer (NK) cells (CD56+), total T cells (CD3+), cytotoxic T cells (CD8+) and CD4+ T cells was determined by flow cytometry. Regulatory T cells (Treg) were also quantified by intracellular Foxp3 evaluation. Regarding innate immunity, NK cells were activated by addition of both Lactobacillus strains, and in particular, the CD8+ NK subset was preferentially induced to highly express CD69 (90%, p<0.05). With respect to acquired immunity, approximately 9% of CD8+ T cells became activated after co-cultivation with L. fermentum or L salivarius. Although CD4+ T cells demonstrated a weaker response, there was a preferential activation of Treg cells (CD4+CD25+Foxp3+) after exposure to both milk probiotic bacteria (p<0.05). Both strains significantly induced the production of a number of cytokines and chemokines, including TNFα, IL-1β, IL-8, MIP-1α, MIP-1β, and GM-CSF, but some strain-specific effects were apparent. This work demonstrates that L salivarius CECT5713 and L. fermentum CECT5716 enhanced both natural and acquired immune responses, as evidenced by the activation of NK and T cell subsets and the expansion of Treg cells, as well as the induction of a broad array of cytokines.
Resumo:
A study was conducted to investigate the effects of wheat straw ammonisation and supplementation with a rumen undegradable protein (UDP) source on nutrient digestion and nitrogen balance by lambs while diets were supplemented with kibbled carob pods as energy source. Ammonisation increased the crude protein content of wheat straw by nearly 100% and decreased the contents of neutral detergent fibre and acid detergent fibre by 7% and 1.7% respectively. Treating the straw with ammonia resulted in significant (P<0.01) increase in nitrogen (N) intake and intakes of organic matter (OM) and dry matter (DM) tended toward significance (P<0.1). The UDP source had no effect (P>0.05) on DM and OM intakes but resulted in an increase (P<0.05) of N intakes. Both, ammonization and UDP supplementation increased (P<0.01) the DM, OM and N digestibility. In conclusion, the results of this study suggest that ammonisation and UDP supplementation is a practical dietary manipulation option to improve the nutritional status of ruminants fed on roughage-based diets.
Resumo:
Sensitive methods that are currently used to monitor proteolysis by plasmin in milk are limited due to 7 their high cost and lack of standardisation for quality assurance in the various dairy laboratories. In 8 this study, four methods, trinitrobenzene sulphonic acid (TNBS), reverse phase high pressure liquid 9 chromatography (RP-HPLC), gel electrophoresis and fluorescamine, were selected to assess their 10 suitability for the detection of proteolysis in milk by plasmin. Commercial UHT milk was incubated 11 with plasmin at 37 °C for one week. Clarification was achieved by isoelectric precipitation (pH 4·6 12 soluble extracts)or 6% (final concentration) trichloroacetic acid (TCA). The pH 4·6 and 6% TCA 13 soluble extracts of milk showed high correlations (R2 > 0·93) by the TNBS, fluorescamine and 14 RP-HPLC methods, confirming increased proteolysis during storage. For gel electrophoresis,15 extensive proteolysis was confirmed by the disappearance of α- and β-casein bands on the seventh 16 day, which was more evident in the highest plasmin concentration. This was accompanied by the 17 appearance of α- and β-casein proteolysis products with higher intensities than on previous days, 18 implying that more products had been formed as a result of casein breakdown. The fluorescamine 19 method had a lower detection limit compared with the other methods, whereas gel electrophoresis 20 was the best qualitative method for monitoring β-casein proteolysis products. Although HPLC was the 21 most sensitive, the TNBS method is recommended for use in routine laboratory analysis on the basis 22 of its accuracy, reliability and simplicity.