908 resultados para security of electricity supply
Resumo:
The restructuring of electricity markets, conducted to increase the competition in this sector, and decrease the electricity prices, brought with it an enormous increase in the complexity of the considered mechanisms. The electricity market became a complex and unpredictable environment, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. Software tools became, therefore, essential to provide simulation and decision support capabilities, in order to potentiate the involved players’ actions. This paper presents the development of a metalearner, applied to the decision support of electricity markets’ negotiation entities. The proposed metalearner executes a dynamic artificial neural network to create its own output, taking advantage on several learning algorithms implemented in ALBidS, an adaptive learning system that provides decision support to electricity markets’ players. The proposed metalearner considers different weights for each strategy, depending on its individual quality of performance. The results of the proposed method are studied and analyzed in scenarios based on real electricity markets’ data, using MASCEM - a multi-agent electricity market simulator that simulates market players’ operation in the market.
Resumo:
The high penetration of distributed energy resources (DER) in distribution networks and the competitiveenvironment of electricity markets impose the use of new approaches in several domains. The networkcost allocation, traditionally used in transmission networks, should be adapted and used in the distribu-tion networks considering the specifications of the connected resources. The main goal is to develop afairer methodology trying to distribute the distribution network use costs to all players which are usingthe network in each period. In this paper, a model considering different type of costs (fixed, losses, andcongestion costs) is proposed comprising the use of a large set of DER, namely distributed generation(DG), demand response (DR) of direct load control type, energy storage systems (ESS), and electric vehi-cles with capability of discharging energy to the network, which is known as vehicle-to-grid (V2G). Theproposed model includes three distinct phases of operation. The first phase of the model consists in aneconomic dispatch based on an AC optimal power flow (AC-OPF); in the second phase Kirschen’s andBialek’s tracing algorithms are used and compared to evaluate the impact of each resource in the net-work. Finally, the MW-mile method is used in the third phase of the proposed model. A distributionnetwork of 33 buses with large penetration of DER is used to illustrate the application of the proposedmodel.
Resumo:
The study of Electricity Markets operation has been gaining an increasing importance in the last years, as result of the new challenges that the restructuring produced. Currently, lots of information concerning Electricity Markets is available, as market operators provide, after a period of confidentiality, data regarding market proposals and transactions. These data can be used as source of knowledge, to define realistic scenarios, essential for understanding and forecast Electricity Markets behaviour. The development of tools able to extract, transform, store and dynamically update data, is of great importance to go a step further into the comprehension of Electricity Markets and the behaviour of the involved entities. In this paper we present an adaptable tool capable of downloading, parsing and storing data from market operators’ websites, assuring actualization and reliability of stored data.
Resumo:
The use of distribution networks in the current scenario of high penetration of Distributed Generation (DG) is a problem of great importance. In the competitive environment of electricity markets and smart grids, Demand Response (DR) is also gaining notable impact with several benefits for the whole system. The work presented in this paper comprises a methodology able to define the cost allocation in distribution networks considering large integration of DG and DR resources. The proposed methodology is divided into three phases and it is based on an AC Optimal Power Flow (OPF) including the determination of topological distribution factors, and consequent application of the MW-mile method. The application of the proposed tariffs definition methodology is illustrated in a distribution network with 33 buses, 66 DG units, and 32 consumers with DR capacity.
Resumo:
The forthcoming smart grids are comprised of integrated microgrids operating in grid-connected and isolated mode with local generation, storage and demand response (DR) programs. The proposed model is based on three successive complementary steps for power transaction in the market environment. The first step is characterized as a microgrid’s internal market; the second concerns negotiations between distinct interconnected microgrids; and finally, the third refers to the actual electricity market. The proposed approach is modeled and tested using a MAS framework directed to the study of the smart grids environment, including the simulation of electricity markets. This is achieved through the integration of the proposed approach with the MASGriP (Multi-Agent Smart Grid Platform) system.
Resumo:
The increase of electricity demand in Brazil, the lack of the next major hydroelectric reservoirs implementation, and the growth of environmental concerns lead utilities to seek an improved system planning to meet these energy needs. The great diversity of economic, social, climatic, and cultural conditions in the country have been causing a more difficult planning of the power system. The work presented in this paper concerns the development of an algorithm that aims studying the influence of the issues mentioned in load curves. Focus is given to residential consumers. The consumption device with highest influence in the load curve is also identified. The methodology developed gains increasing importance in the system planning and operation, namely in the smart grids context.
Resumo:
Demand response programs and models have been developed and implemented for an improved performance of electricity markets, taking full advantage of smart grids. Studying and addressing the consumers’ flexibility and network operation scenarios makes possible to design improved demand response models and programs. The methodology proposed in the present paper aims to address the definition of demand response programs that consider the demand shifting between periods, regarding the occurrence of multi-period demand response events. The optimization model focuses on minimizing the network and resources operation costs for a Virtual Power Player. Quantum Particle Swarm Optimization has been used in order to obtain the solutions for the optimization model that is applied to a large set of operation scenarios. The implemented case study illustrates the use of the proposed methodology to support the decisions of the Virtual Power Player in what concerns the duration of each demand response event.
Resumo:
Relatório de Estágio Curricular apresentado ao Instituto Superior de Contabilidade e Administração do Porto para obtenção do Grau de Mestre em Logística Orientado pelo Doutor Júlio Faceira Guedes Coorientado pelo Engenheiro Ricardo Costa Moreira
Resumo:
O planeamento de redes de distribuição tem como objetivo assegurar a existência de capacidade nas redes para a fornecimento de energia elétrica com bons níveis de qualidade de serviço tendo em conta os fatores económicos associados. No âmbito do trabalho apresentado na presente dissertação, foi elaborado um modelo de planeamento que determina a configuração de rede resultante da minimização de custos associados a: 1) perdas por efeito de joule; 2) investimento em novos componentes; 3) energia não entregue. A incerteza associada ao valor do consumo de cada carga é modelada através de lógica difusa. O problema de otimização definido é resolvido pelo método de decomposição de benders que contempla dois trânsitos de potências ótimos (modelo DC e modelo AC) no problema mestre e escravo respectivamente para validação de restrições. Foram também definidos critérios de paragem do método de decomposição de benders. O modelo proposto classifica-se como programação não linear inteira mista e foi implementado na ferramenta de otimização General Algebraic Modeling System (GAMS). O modelo desenvolvido tem em conta todos componentes das redes para a otimização do planeamento, conforme podemos analisar nos casos de estudo implementados. Cada caso de estudo é definido pela variação da importância que cada uma das variáveis do problema toma, tendo em vista cobrir de alguma todos os cenários de operação expetáveis. Através destes casos de estudo verifica-se as várias configurações que a rede pode tomar, tendo em conta as importâncias atribuídas a cada uma das variáveis, bem como os respetivos custos associados a cada solução. Este trabalho oferece um considerável contributo no âmbito do planeamento de redes de distribuição, pois comporta diferentes variáveis para a execução do mesmo. É também um modelo bastante robusto não perdendo o ‘norte’ no encontro de solução para redes de grande dimensão, com maior número de componentes.
Resumo:
The high penetration of distributed energy resources (DER) in distribution networks and the competitive environment of electricity markets impose the use of new approaches in several domains. The network cost allocation, traditionally used in transmission networks, should be adapted and used in the distribution networks considering the specifications of the connected resources. The main goal is to develop a fairer methodology trying to distribute the distribution network use costs to all players which are using the network in each period. In this paper, a model considering different type of costs (fixed, losses, and congestion costs) is proposed comprising the use of a large set of DER, namely distributed generation (DG), demand response (DR) of direct load control type, energy storage systems (ESS), and electric vehicles with capability of discharging energy to the network, which is known as vehicle-to-grid (V2G). The proposed model includes three distinct phases of operation. The first phase of the model consists in an economic dispatch based on an AC optimal power flow (AC-OPF); in the second phase Kirschen's and Bialek's tracing algorithms are used and compared to evaluate the impact of each resource in the network. Finally, the MW-mile method is used in the third phase of the proposed model. A distribution network of 33 buses with large penetration of DER is used to illustrate the application of the proposed model.
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Industrial
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia do Ambiente, Perfil de Gestão e Sistemas Ambientais
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia e Gestão Industrial
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Industrial