997 resultados para second coming
Resumo:
A new algorithm for training of nonlinear optimal neuro-controllers (in the form of the model-free, action-dependent, adaptive critic paradigm). Overcomes problems with existing stochastic backpropagation training: need for data storage, parameter shadowing and poor convergence, offering significant benefits for online applications.
Resumo:
The triple differential cross sections for ionization of atomic hydrogen by electron impact are analysed in the case of coplanar, asymmetric geometry within the framework of second- order distorted wave theory. Detailed calculations are performed without making any approximations (other than numerical) in the evaluation of the second-order amplitude. The present results are compared with experimental measurements and other theoretical calculations for incident energies of 250, 150 and 54.4 eV. It is found that the second-order calculations represent a marked improvement over the results obtained from first-order theories for impact energies of 150 eV and higher. The close agreement between the present second-order plane wave calculation and those of Byron et al calculated using the closure approximation at an incident energy of 250 eV implies that the closure approximation is valid for this energy. The large difference between the present second-order distorted wave calculations and experiment at an incident energy of 54.4 eV suggests that higher order effects are important for incident energies less than 100 eV.
Resumo:
This paper is concerned with linear and nonlinear magneto- optical effects in multilayered magnetic systems when treated by the simplest phenomenological model that allows their response to be represented in terms of electric polarization, The problem is addressed by formulating a set of boundary conditions at infinitely thin interfaces, taking into account the existence of surface polarizations. Essential details are given that describe how the formalism of distributions (generalized functions) allows these conditions to be derived directly from the differential form of Maxwell's equations. Using the same formalism we show the origin of alternative boundary conditions that exist in the literature. The boundary value problem for the wave equation is formulated, with an emphasis on the analysis of second harmonic magneto-optical effects in ferromagnetically ordered multilayers. An associated problem of conventions in setting up relationships between the nonlinear surface polarization and the fundamental electric field at the interfaces separating anisotropic layers through surface susceptibility tensors is discussed. A problem of self- consistency of the model is highlighted, relating to the existence of resealing procedures connecting the different conventions. The linear approximation with respect to magnetization is pursued, allowing rotational anisotropy of magneto-optical effects to be easily analyzed owing to the invariance of the corresponding polar and axial tensors under ordinary point groups. Required representations of the tensors are given for the groups infinitym, 4mm, mm2, and 3m, With regard to centrosymmetric multilayers, nonlinear volume polarization is also considered. A concise expression is given for its magnetic part, governed by an axial fifth-rank susceptibility tensor being invariant under the Curie group infinityinfinitym.
Resumo:
Reduced-size polarized (ZmPolX) basis sets are developed for the second-row atoms X = Si, P, S, and Cl. The generation of these basis sets follows from a simple physical model of the polarization effect of the external electric field which leads to highly compact polarization functions to be added to the chosen initial basis set. The performance of the ZmPolX sets has been investigated in calculations of molecular dipole moments and polarizabilities. Only a small deterioration of the quality of the calculated molecular electric properties has been found. Simultaneously the size of the present reduced-size ZmPolX basis sets is about one-third smaller than that of the usual polarized (PolX) sets. This reduction considerably widens the range of applications of the ZmPolX sets in calculations of molecular dipole moments, dipole polarizabilities, and related properties.