697 resultados para science learning
Resumo:
Based on clues from epidemiology, low prenatal vitamin D has been proposed as a candidate risk factor for schizophrenia. Recent animal experiments have demonstrated that transient prenatal vitamin D deficiency is associated with persistent alterations in brain morphology and neurotrophin expression. In order to explore the utility of the vitamin D animal model of schizophrenia, we examined different types of learning and memory in adult rats exposed to transient prenatal vitamin D deficiency. Compared to control animals, the prenatally deplete animals had a significant impairment of latent inhibition, a feature often associated with schizophrenia. In addition, the deplete group was (a) significantly impaired on hole board habituation and (b) significantly better at maintaining previously learnt rules of brightness discrimination in a Y-chamber. In contrast, the prenatally deplete animals showed no impairment on the spatial learning task in the radial maze, nor on two-way active avoidance learning in the shuttle-box. The results indicate that transient prenatal vitamin D depletion in the rat is associated with subtle and discrete alterations in learning and memory. The behavioural phenotype associated with this animal model may provide insights into the neurobiological correlates of the cognitive impairments of schizophrenia. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Virtual learning environments (VLEs) are computer-based online learning environments, which provide opportunities for online learners to learn at the time and location of their choosing, whilst allowing interactions and encounters with other online learners, as well as affording access to a wide range of resources. They have the capability of reaching learners in remote areas around the country or across country boundaries at very low cost. Personalized VLEs are those VLEs that provide a set of personalization functionalities, such as personalizing learning plans, learning materials, tests, and are capable of initializing the interaction with learners by providing advice, necessary instant messages, etc., to online learners. One of the major challenges involved in developing personalized VLEs is to achieve effective personalization functionalities, such as personalized content management, learner model, learner plan and adaptive instant interaction. Autonomous intelligent agents provide an important technology for accomplishing personalization in VLEs. A number of agents work collaboratively to enable personalization by recognizing an individual's eLeaming pace and reacting correspondingly. In this research, a personalization model has been developed that demonstrates dynamic eLearning processes; secondly, this study proposes an architecture for PVLE by using intelligent decision-making agents' autonomous, pre-active and proactive behaviors. A prototype system has been developed to demonstrate the implementation of this architecture. Furthemore, a field experiment has been conducted to investigate the performance of the prototype by comparing PVLE eLearning effectiveness with a non-personalized VLE. Data regarding participants' final exam scores were collected and analyzed. The results indicate that intelligent agent technology can be employed to achieve personalization in VLEs, and as a consequence to improve eLeaming effectiveness dramatically.
Resumo:
This article describes the types of discourse 10 Australian grade 4-6 teachers used after they had been trained to embed cooperative learning in their curriculum and to use communication skills to promote students' thinking and to scaffold their learning. One audiotaped classroom social science lesson involving cooperative learning was analyzed for each teacher. We provide vignettes from 2 teachers as they worked with groups and from 2 student groups. The data from the audiotapes showed that the teachers used a range of mediated-learning behaviors in their interactions with the children that included challenging their perspectives, asking more cognitive and metacognitive questions, and scaffolding their learning. In turn, in their interactions with each other, the children modelled many of the types of discourse they heard their teachers use. Follow-up interviews with the teachers revealed that they believed it was important to set expectations for children's group behaviors, teach the social skills students needed to deal with disagreement in groups, and establish group structures so children understood what was required both from each other and the task. The teachers reported that mixed ability and gender groups worked best and that groups should be no larger than 5 students. All teachers' programs were based on a child-centered philosophy that recognized the importance of constructivist approaches to learning and the key role interaction plays in promoting social reasoning and learning.
Resumo:
There is evidence that alienation from science is linked to the dominant discourse practices of science classrooms (cf. Lemke, J. L. (1990). Talking Science: Language, Learning, and Values. Norwood, NJ: Ablex). Yet, in secondary science education it is particularly hard to find evidence of curriculum reform that includes explicit changes in pedagogic discourses to accommodate the needs of students from a wide range of backgrounds. However, such evidence does exist and needs to be highlighted wherever it is found to help address social justice concerns in science education. In this article, I show how critical discourse analysis can be used to explore a way of challenging the dominant discourse in teacher-student interactions in science classrooms. My findings suggest a new way of moving toward more socially just science curricula in middle years and secondary classrooms by using hybrid discourses that can serve emancipatory purposes. © 2005 Wiley Periodicals. Inc.
Resumo:
Objective: Inpatient length of stay (LOS) is an important measure of hospital activity, health care resource consumption, and patient acuity. This research work aims at developing an incremental expectation maximization (EM) based learning approach on mixture of experts (ME) system for on-line prediction of LOS. The use of a batchmode learning process in most existing artificial neural networks to predict LOS is unrealistic, as the data become available over time and their pattern change dynamically. In contrast, an on-line process is capable of providing an output whenever a new datum becomes available. This on-the-spot information is therefore more useful and practical for making decisions, especially when one deals with a tremendous amount of data. Methods and material: The proposed approach is illustrated using a real example of gastroenteritis LOS data. The data set was extracted from a retrospective cohort study on all infants born in 1995-1997 and their subsequent admissions for gastroenteritis. The total number of admissions in this data set was n = 692. Linked hospitalization records of the cohort were retrieved retrospectively to derive the outcome measure, patient demographics, and associated co-morbidities information. A comparative study of the incremental learning and the batch-mode learning algorithms is considered. The performances of the learning algorithms are compared based on the mean absolute difference (MAD) between the predictions and the actual LOS, and the proportion of predictions with MAD < 1 day (Prop(MAD < 1)). The significance of the comparison is assessed through a regression analysis. Results: The incremental learning algorithm provides better on-line prediction of LOS when the system has gained sufficient training from more examples (MAD = 1.77 days and Prop(MAD < 1) = 54.3%), compared to that using the batch-mode learning. The regression analysis indicates a significant decrease of MAD (p-value = 0.063) and a significant (p-value = 0.044) increase of Prop(MAD
Resumo:
The habituation to intense acoustic stimuli and the acquisition of differentially conditioned fear were assessed in 53 clinically anxious and 30 non-anxious control children and young adolescents. Anxious children tended to show larger electrodermal responses during habituation, but did not differ in blink startle latency or magnitude. After acquisition training, non-anxious children rated the CS + as more fear provoking and arousing than the CS- whereas the ratings of anxious children did not differ. However, anxious children rated the CS + as more fear provoking after extinction, a difference that was absent in non-anxious children. During extinction training, anxious children displayed larger blink magnitude facilitation during CS + and a trend towards larger electrodermal responses, a tendency not seen in nonanxious children. These data suggest that extinction of fear learning is retarded in anxious children. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Machine learning techniques have been recognized as powerful tools for learning from data. One of the most popular learning techniques, the Back-Propagation (BP) Artificial Neural Networks, can be used as a computer model to predict peptides binding to the Human Leukocyte Antigens (HLA). The major advantage of computational screening is that it reduces the number of wet-lab experiments that need to be performed, significantly reducing the cost and time. A recently developed method, Extreme Learning Machine (ELM), which has superior properties over BP has been investigated to accomplish such tasks. In our work, we found that the ELM is as good as, if not better than, the BP in term of time complexity, accuracy deviations across experiments, and most importantly - prevention from over-fitting for prediction of peptide binding to HLA.
Resumo:
In this letter, we propose a class of self-stabilizing learning algorithms for minor component analysis (MCA), which includes a few well-known MCA learning algorithms. Self-stabilizing means that the sign of the weight vector length change is independent of the presented input vector. For these algorithms, rigorous global convergence proof is given and the convergence rate is also discussed. By combining the positive properties of these algorithms, a new learning algorithm is proposed which can improve the performance. Simulations are employed to confirm our theoretical results.
Resumo:
The last two decades has seen a proliferation in the provision of and importance attached to coach education in many Western countries. Pivotal to many coach education programmes is the notion of apprenticeship. Increasingly, mentoring is being positioned as a possible tool for enhancing coach education and professional expertise. However, there is a paucity of empirical data on interventions in and evaluations of coach education programmes. In their recent evaluation of a coach education programme, Cassidy, Potrac & McKenzie conclude that the situated learning literature could provide coach educators with a generative platform for the (re)examination of apprenticeships and mentoring in a coach education context. This paper discusses the merits of using Situated Learning theory and the associated concept of Communities of Practice (CoP) to stimulate discussion on developing new understandings of the practices of apprenticeship and mentoring in coach education.
Resumo:
Allowing plant pathology students to tackle fictitious or real crop problems during the course of their formal training not only teaches them the diagnostic process, but also provides for a better understanding of disease etiology. Such a problem-solving approach can also engage, motivate, and enthuse students about plant pathologgy in general. This paper presents examples of three problem-based approaches to diagnostic training utilizing freely available software. The first provides an adventure-game simulation where Students are asked to provide a diagnosis and recommendation after exploring a hypothetical scenario or case. Guidance is given oil how to create these scenarios. The second approach involves students creating their own scenarios. The third uses a diagnostic template combined with reporting software to both guide and capture students' results and reflections during a real diagnostic assignment.
Resumo:
The current trend among many universities is to increase the number of courses available online. However, there are fundamental problems in transferring traditional education courses to virtual formats. Delivering current curricula in an online format does not assist in overcoming the negative effects on student motivation which are inherent in providing information passively. Using problem-based learning (PBL) online is a method by which computers can become a tool to encourage active learning among students. The delivery of curricula via goal-based scenarios allows students to learn at different rates and can successfully shift online learning from memorization to discovery. This paper reports on a Web-based e-health course that has been delivered via PBL for the past 12 months. Thirty distance-learning students undertook postgraduate courses in e-health delivered via the Internet (asynchronous communication). Data collected via online student surveys indicated that the PBL format was both flexible and interesting. PBL has the potential to increase the quality of the educational experience of students in online environments.