968 resultados para rope bridge,


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In my thesis, I use literary criticism, knowledge of Russian, and elements of translation theory to study the seminal poet of the Russian literary tradition ¿ Aleksandr Pushkin. In his most famous work, Eugene Onegin, Pushkin explores the cultural and linguistic divide in place at the turn of the 19th century in Russia. Pushkin stands on the peripheries of several colliding worlds; never fully committing to any of them, he acts as a translator between various realms of the 19th-century Russian experience. Through his narrator, he adeptly occupies the voices, styles, and modes of expression of various characters, displaying competency in all realms of Russian life. In examining Tatiana, his heroine, the reader witnesses her development as analogous to the author¿s. At the center of the text stands the act of translation itself: as the narrator ¿translates¿ Tatiana¿s love letter from French to Russian, the author-narrator declares his function as a mediator, not only between languages, but also between cultures, literary canons, social classes, and identities. Tatiana, as both main character and the narrator¿s muse, emerges as the most complex figure in the novel, and her language manifests itself as the most direct and capable of sincerity in the novel. The elements of Russian folklore that are incorporated into her language speak to Pushkin¿s appreciation for the rich Russian folklore tradition. In his exaltation of language considered to be ¿common¿, ¿low¿ speech is juxtaposed with its lofty counterpart; along the way, he incorporates myriad foreign borrowings. An active creator of Russia¿s new literary language, Pushkin traverses linguistic boundaries to synthesize a fragmented Russia. In the process, he creates a work so thoroughly tied to language and entrenched in complex cultural traditions that many scholars have argued for its untranslatability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The long-term performance of infrastructure depends on reliable and sustainable designs. Many of Pennsylvania’s streams experience sediment transport problems that increase maintenance costs and lower structural integrity of bridge crossings. A stream restoration project is one common mitigation measure used to correct such problems at bridge crossings. Specifically, in an attempt to alleviate aggradation problems with the Old Route 15 Bridge crossing on White Deer Creek, in White Deer, PA, two in-stream structures (rock cross vanes) and several bank stabilization features were installed along with a complete channel redevelopment. The objectives of this research were to characterize the hydraulic and sediment transport processes occurring at the White Deer Creek site, and to investigate, through physical and mathematical modeling, the use of instream restoration structures. The goal is to be able to use the results of this study to prevent aggradation or other sediment related problems in the vicinity of bridges through improved design considerations. Monitoring and modeling indicate that the study site on White Deer Creek is currently unstable, experiencing general channel down-cutting, bank erosion, and several local areas of increased aggradation and degradation of the channel bed. An in-stream structure installed upstream of the Old Route 15 Bridge failed by sediment burial caused by the high sediment load that White Deer Creek is transporting as well as the backwater effects caused by the bridge crossing. The in-stream structure installed downstream of the Old Route 15 Bridge is beginning to fail because of the alignment of the structure with the approach direction of flow from upstream of the restoration structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 20-month old girl with severe pulmonary hypertension and cardiomegaly was admitted to the paediatric intensive care unit with right ventricular failure of unknown origin. Only after decompression of the heart chambers under extracorporeal membrane oxygenation (ECMO), did the pathognomonic membrane of Cor triatriatum become visible on echocardiography. The patient underwent successful surgical correction and subsequently cardiac function recovered completely. Cor triatriatum remains a rare congenital cardiac disorder with a variable presentation, often including recurrent respiratory infections before right-sided heart failure occurs. This case illustrates that ECMO can serve not only as a bridge to diagnosis, but can also facilitate correct diagnosis. Given the excellent outcome after surgical treatment, it is crucial that cardiologists rule out the possibility of cor triatriatum when assessing a child with unexplained pulmonary hypertension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Implantation of a ventricular assist device (VAD) reduces short-term mortality and morbidity and provides patients with reasonable quality of life even though it may also be a long-lasting emotional burden. This study was conducted to analyze the long-time emotional consequences of VAD implantation, followed by heart transplantation in patients and spouses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the introduction of the rope-pump in Nicaragua in the 1990s, the dependence on wells in rural areas has grown steadily. However, little or no attention is paid to rope-pump well performance after installation. Due to financial restraints, groundwater resource monitoring using conventional testing methods is too costly and out of reach of rural municipalities. Nonetheless, there is widespread agreement that without a way to quantify the changes in well performance over time, prioritizing regulatory actions is impossible. A manual pumping test method is presented, which at a fraction of the cost of a conventional pumping test, measures the specific capacity of rope-pump wells. The method requires only sight modifcations to the well and reasonable limitations on well useage prior to testing. The pumping test was performed a minimum of 33 times in three wells over an eight-month period in a small rural community in Chontales, Nicaragua. Data was used to measure seasonal variations in specific well capacity for three rope-pump wells completed in fractured crystalline basalt. Data collected from the tests were analyzed using four methods (equilibrium approximation, time-drawdown during pumping, time-drawdown during recovery, and time-drawdown during late-time recovery) to determine the best data-analyzing method. One conventional pumping test was performed to aid in evaluating the manual method. The equilibrim approximation can be performed while in the field with only a calculator and is the most technologically appropriate method for analyzing data. Results from this method overestimate specific capacity by 41% when compared to results from the conventional pumping test. The other analyes methods, requiring more sophisticated tools and higher-level interpretation skills, yielded results that agree to within 14% (pumping phase), 31% (recovery phase) and 133% (late-time recovery) of the conventional test productivity value. The wide variability in accuracy results principally from difficulties in achieving equilibrated pumping level and casing storage effects in the puping/recovery data. Decreases in well productivity resulting from naturally occuring seasonal water-table drops varied from insignificant in two wells to 80% in the third. Despite practical and theoretical limitations on the method, the collected data may be useful for municipal institutions to track changes in well behavior, eventually developing a database for planning future ground water development projects. Furthermore, the data could improve well-users’ abilities to self regulate well usage without expensive aquifer characterization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As transportation infrastructure across the globe approaches the end of its service life, new innovative materials and applications are needed to sustainably repair and prevent damage to these structures. Bridge structures in the United States in particular are at risk as a large percentage will be reaching their design service lives in the coming decades. Superstructure deterioration occurs due to a variety of factors, but a major contributor comes in the form of deteriorating concrete bridge decks. Within a concrete bridge deck system, deterioration mechanisms can include spalling, delaminations, scaling from unsuitable material selection, freeze-thaw damage, and corrosion of reinforcing steel due to infiltration of chloride ions and moisture. This thesis presents findings pertaining to the feasibility of using UHPC as a thin-bonded overlay on concrete bridge decks, specifically in precast bridge deck applications where construction duration and traffic interruption can be minimized, as well as in cast-in-place field applications. UHPC has several properties that make it a desirable material for this application. These properties include post-cracking tensile capacity, high compressive strength, high resistance to environmental and chemical attack, negligible permeability, negligible dry shrinkage when thermally cured, and the ability to self consolidate. The compatibility of this bridge deck overlay system was determined to minimize overlay thickness and dead load without sacrificing bond integrity or lose of protective capabilities. A parametric analysis was conducted using a 3D finite element model of a simply supported bridge under HS-20 truck and overload. Experimental tests were conducted to determine the net effect of UHPC volume change due to restrained shrinkage and tensile creep relaxation. The combined effects from numerical models and test results were then considered in determining the optimum overlay thickness for cast-in-place and precast applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Project-based education and portfolio assessments are at the forefront of educational research. This research follows the implementation of a project-based unit in a high school physics class. Students played the role of an engineering firm who designed, built and tested file folder bridges. The purpose was to determine if projectbased learning could improve student attitude toward science and related careers like engineering. Teams of students presented their work in a portfolio for a final assessment of the process of designing, building and testing their bridges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Routine bridge inspections require labor intensive and highly subjective visual interpretation to determine bridge deck surface condition. Light Detection and Ranging (LiDAR) a relatively new class of survey instrument has become a popular and increasingly used technology for providing as-built and inventory data in civil applications. While an increasing number of private and governmental agencies possess terrestrial and mobile LiDAR systems, an understanding of the technology’s capabilities and potential applications continues to evolve. LiDAR is a line-of-sight instrument and as such, care must be taken when establishing scan locations and resolution to allow the capture of data at an adequate resolution for defining features that contribute to the analysis of bridge deck surface condition. Information such as the location, area, and volume of spalling on deck surfaces, undersides, and support columns can be derived from properly collected LiDAR point clouds. The LiDAR point clouds contain information that can provide quantitative surface condition information, resulting in more accurate structural health monitoring. LiDAR scans were collected at three study bridges, each of which displayed a varying degree of degradation. A variety of commercially available analysis tools and an independently developed algorithm written in ArcGIS Python (ArcPy) were used to locate and quantify surface defects such as location, volume, and area of spalls. The results were visual and numerically displayed in a user-friendly web-based decision support tool integrating prior bridge condition metrics for comparison. LiDAR data processing procedures along with strengths and limitations of point clouds for defining features useful for assessing bridge deck condition are discussed. Point cloud density and incidence angle are two attributes that must be managed carefully to ensure data collected are of high quality and useful for bridge condition evaluation. When collected properly to ensure effective evaluation of bridge surface condition, LiDAR data can be analyzed to provide a useful data set from which to derive bridge deck condition information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bridge inspection industry has yet to utilize a rapidly growing technology that shows promise to help improve the inspection process. This thesis investigates the abilities that 3D photogrammetry is capable of providing to the bridge inspector for a number of deterioration mechanisms. The technology can provide information about the surface condition of some bridge components, primarily focusing on the surface defects of a concrete bridge which include cracking, spalling and scaling. Testing was completed using a Canon EOS 7D camera which then processed photos using AgiSoft PhotoScan to align the photos and develop models. Further processing of the models was done using ArcMap in the ArcGIS 10 program to view the digital elevation models of the concrete surface. Several experiments were completed to determine the ability of the technique for the detection of the different defects. The cracks that were able to be resolved in this study were a 1/8 inch crack at a distance of two feet above the surface. 3D photogrammetry was able to be detect a depression of 1 inch wide with 3/16 inch depth which would be sufficient to measure any scaling or spalling that would be required be the inspector. The percentage scaled or spalled was also able to be calculated from the digital elevation models in ArcMap. Different camera factors including the distance from the defects, number of photos and angle, were also investigated to see how each factor affected the capabilities. 3D photogrammetry showed great promise in the detection of scaling or spalling of the concrete bridge surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infrared thermography is a well-recognized non-destructive testing technique for evaluating concrete bridge elements such as bridge decks and piers. However, overcoming some obstacles and limitations are necessary to be able to add this invaluable technique to the bridge inspector's tool box. Infrared thermography is based on collecting radiant temperature and presenting the results as a thermal infrared image. Two methods considered in conducting an infrared thermography test include passive and active. The source of heat is the main difference between these two approaches of infrared thermography testing. Solar energy and ambient temperature change are the main heat sources in conducting a passive infrared thermography test, while active infrared thermography involves generating a temperature gradient using an external source of heat other than sun. Passive infrared thermography testing was conducted on three concrete bridge decks in Michigan. Ground truth information was gathered through coring several locations on each bridge deck to validate the results obtained from the passive infrared thermography test. Challenges associated with data collection and processing using passive infrared thermography are discussed and provide additional evidence to confirm that passive infrared thermography is a promising remote sensing tool for bridge inspections. To improve the capabilities of the infrared thermography technique for evaluation of the underside of bridge decks and bridge girders, an active infrared thermography technique using the surface heating method was developed in the laboratory on five concrete slabs with simulated delaminations. Results from this study demonstrated that active infrared thermography not only eliminates some limitations associated with passive infrared thermography, but also provides information regarding the depth of the delaminations. Active infrared thermography was conducted on a segment of an out-of-service prestressed box beam and cores were extracted from several locations on the beam to validate the results. This study confirms the feasibility of the application of active infrared thermography on concrete bridges and of estimating the size and depth of delaminations. From the results gathered in this dissertation, it was established that applying both passive and active thermography can provide transportation agencies with qualitative and quantitative measures for efficient maintenance and repair decision-making.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The occurrence of severe graft failure after lung transplantation which appears refractory to conventional treatment represents a difficult situation with regard to the therapeutic strategies available. Of 17 patients undergoing single lung transplantation at our center, 2 developed early graft failure. In both, temporary artificial cardiopulmonary support by means of extracorporeal membrane oxygenation became necessary as a bridge to retransplantation. Both patients were successfully retransplanted after 8 h and 232 h, respectively, of extra-corporeal support. Postoperatively, there was a variety of complications. The first patient completely recovered from temporary severe cerebral dysfunction diagnosed as "locked-in syndrome". She was discharged from hospital on the 93rd postoperative day and remains alive and well 10 months after her operation. The other patient recovered well early after retransplantation. Later, however, airway problems developed, requiring the implantation of endotracheal stents. Cachexia and several episodes of viral pneumonia contributed to the progressive deterioration of her clinical status. She finally died after being hospitalized for 5 months after the original operation. These two cases illustrate the feasibility of using extracorporeal membrane oxygenation as a bridge to pulmonary transplantation.