924 resultados para regulatory


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immune modulation by herpesviruses, such as cytomegalovirus, is critical for the establishment of acute and persistent infection confronting a vigorous antiviral immune response of the host. Therefore, the action of immune-modulatory proteins has long been the subject of research, with the final goal to identify new strategies for antiviral therapy.rnIn the case of murine cytomegalovirus (mCMV), the viral m152 protein has been identified to play a major role in targeting components of both the innate and the adaptive immune system in terms of infected host-cell recognition in the effector phase of the antiviral immune response. On the one hand, it inhibits cell surface expression of RAE-1 and thereby prevents ligation of the activating natural killer (NK)-cell receptor NKG2D. On the other hand, it decreases cell surface expression of peptide-loaded MHC class I molecules thereby preventing antigen presentation to CD8 T cells. Ultimately, the outcome of CMV infection is determined by the interplay between viral and cellular factors.rnIn this context, the work presented here has revealed a novel and intriguing connection between viral m152 and cellular interferon (IFN), a key cytokine of the immune system: rnthe m152 promoter region contains an interferon regulatory factor element (IRFE) perfectly matching the consensus sequence of cellular IRFEs.rnThe biological relevance of this regulatory element was first suggested by sequence comparisons revealing its evolutionary conservation among various established laboratory strains of mCMV and more recent low-passage wild-derived virus isolates. Moreover, search of the mCMV genome revealed only three IRFE sites in the complete sequence. Importantly, the functionality of the IRFE in the m152 promoter was confirmed with the use of a mutant virus, representing a functional deletion of the IRFE, and its corresponding revertant virus. In particular, m152 gene expression was found to be inhibited in an IRFE-dependent manner in infected cells. Essentially, this inhibition proved to have a severe impact on the immune-modulatory function of m152, first demonstrated by a restored direct antigen presentation on infected cells for CD8 T-cell activation. Even more importantly, this effect of IRFE-mediated IFN signaling was validated in vivo by showing that the protective antiviral capacity of adoptively-transferred, antigen-specific CD8 T cells is also significantly restored by the IRFE-dependent inhibition of m152. Somewhat curious and surprising, the decrease in m152 protein simultaneously prevented an enhanced activation of NK cells in acute-infected mice, apparently independent of the RAE-1/NKG2D ligand/receptor interaction but rather due to reduced ‘missing-self’ recognition.rnTaken together, this work presents a so far unknown mechanism of IFN signaling to control mCMV immune modulation in acute infection.rnrn

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid organ transplantation (SOT) is considered the treatment of choice for many end-stage organ diseases. Thus far, short term results are excellent, with patient survival rates greater than 90% one year post-surgery, but there are several problems with the long term acceptance and use of immunosuppressive drugs. Hematopoietic Stem Cells Transplantation (HSCT) concerns the infusion of haematopoietic stem cells to re-establish acquired and congenital disorders of the hematopoietic system. The main side effect is the Graft versus Host Disease (GvHD) where donor T cells can cause pathology involving the damage of host tissues. Patients undergoing acute or chronic GvHD receive immunosuppressive regimen that is responsible for several side effects. The use of immunosuppressive drugs in the setting of SOT and GvHD has markedly reduced the incidence of acute rejection and the tissue damage in GvHD however, the numerous adverse side effects observed boost the development of alternative strategies to improve the long-term outcome. To this effect, the use of CD4+CD25+FOXP3+ regulatory T cells (Treg) as a cellular therapy is an attractive approach for autoimmunity disease, GvHD and limiting immune responses to allograft after transplantation. Treg have a pivotal role in maintaining peripheral immunological tolerance, by preventing autoimmunity and chronic inflammation. Results of my thesis provide the characterization and cell processing of Tregs from healthy controls and patients in waiting list for liver transplantation, followed by the development of an efficient expansion-protocol and the investigation of the impact of the main immunosuppressive drugs on viability, proliferative capacity and function of expanded cells after expansion. The conclusion is that ex vivo expansion is necessary to infuse a high Treg dose and although many other factors in vivo can contribute to the success of Treg therapy, the infusion of Tregs during the administration of the highest dose of immunosuppressants should be carefully considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neisseria meningitidis, the leading cause of bacterial meningitis, can adapt to different host niches during human infection. Both transcriptional and post-transcriptional regulatory networks have been identified as playing a crucial role for bacterial stress responses and virulence. We investigated the N. meningitidis transcriptional landscape both by microarray and by RNA sequencing (RNAseq). Microarray analysis of N. meningitidis grown in the presence or absence of glucose allowed us to identify genes regulated by carbon source availability. In particular, we identified a glucose-responsive hexR-like transcriptional regulator in N. meningitidis. Deletion analysis showed that the hexR gene is accountable for a subset of the glucose-responsive regulation, and in vitro assays with the purified protein showed that HexR binds to the promoters of the central metabolic operons of meningococcus, by targeting a DNA region overlapping putative regulatory sequences. Our results indicate that HexR coordinates the central metabolism of meningococcus in response to the availability of glucose, and N. meningitidis strains lacking the hexR gene are also deficient in establishing successful bacteremia in a mouse model of infection. In parallel, RNAseq analysis of N. meningitidis cultured under standard or iron-limiting in vitro growth conditions allowed us to identify novel small non-coding RNAs (sRNAs) potentially involved in N. meningitidis regulatory networks. Manual curation of the RNAseq data generated a list of 51 sRNAs, 8 of which were validated by Northern blotting. Deletion of selected sRNAs caused attenuation of N. meningitidis infection in a murine model, leading to the identification of the first sRNAs influencing meningococcal bacteraemia. Furthermore, we describe the identification and initial characterization of a novel sRNA unique to meningococcus, closely associated to genes relevant for the intracellular survival of pathogenic Neisseriae. Taken together, our findings could help unravel the regulation of N. meningitidis adaptation to the host environment and its implications for pathogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After the 2008 financial crisis, the financial innovation product Credit-Default-Swap (CDS) was widely blamed as the main cause of this crisis. CDS is one type of over-the-counter (OTC) traded derivatives. Before the crisis, the trading of CDS was very popular among the financial institutions. But meanwhile, excessive speculative CDSs transactions in a legal environment of scant regulation accumulated huge risks in the financial system. This dissertation is divided into three parts. In Part I, we discussed the primers of the CDSs and its market development, then we analyzed in detail the roles CDSs had played in this crisis based on economic studies. It is advanced that CDSs not just promoted the eruption of the crisis in 2007 but also exacerbated it in 2008. In part II, we asked ourselves what are the legal origins of this crisis in relation with CDSs, as we believe that financial instruments could only function, positive or negative, under certain legal institutional environment. After an in-depth inquiry, we observed that at least three traditional legal doctrines were eroded or circumvented by OTC derivatives. It is argued that the malfunction of these doctrines, on the one hand, facilitated the proliferation of speculative CDSs transactions; on the other hand, eroded the original risk-control legal mechanism. Therefore, the 2008 crisis could escalate rapidly into a global financial tsunami, which was out of control of the regulators. In Part III, we focused on the European Union’s regulatory reform towards the OTC derivatives market. In specific, EU introduced mandatory central counterparty clearing obligation for qualified OTC derivatives, and requires that all OTC derivatives shall be reported to a trade repository. It is observable that EU’s approach in re-regulating the derivatives market is different with the traditional administrative regulation, but aiming at constructing a new market infrastructure for OTC derivatives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

T helper (Th) 9 cells are an important subpopulation of the CD4+ T helper cells. Due to their ability to secrete Interleukin-(IL-)9, Th9 cells essentially contribute to the expulsion of parasitic helminths from the intestinal tract but they play also an immunopathological role in the course of asthma. Recently, a beneficial function of Th9 cells in anti-tumor immune responses was published. In a murine melanoma tumor model Th9 cells were shown to enhance the anti-melanoma immune response via the recruitment of CD8+ T cells, dendritic cells and mast cells. In contrast to Th9 effector cells regulatory T cells (Tregs) are able to control an immune response with the aid of different suppressive mechanisms. Based on their ability to suppress an immune response Tregs are believed to be beneficial in asthma by diminishing excessive allergic reactions. However, concerning cancer they can have a detrimental function because Tregs inhibit an effective anti-tumor immune reaction. Thus, the analysis of Th9 suppression by Tregs is of central importance concerning the development of therapeutic strategies for the treatment of cancer and allergic diseases and was therefore the main objective of this PhD thesis.rnIn general it could be demonstrated that the development of Th9 cells can be inhibited by Tregs in vitro. The production of the lineage-specific cytokine IL-9 by developing Th9 cells was completely suppressed at a Treg/Th9 ratio of 1:1 on the transcriptional (qRT-PCR) as well as on the translational level (ELISA). In contrast, the expression of IRF4 that was found to strongly promote Th9 development was not reduced in the presence of Tregs, suggesting that IRF4 requires additional transcription factors to induce the differentiation of Th9 cells. In order to identify such factors, which regulate Th9 development and therefore represent potential targets for Treg-mediated suppressive mechanisms, a transcriptome analysis using “next-generation sequencing” was performed. The expression of some genes which were found to be up- or downregulated in Th9 cells in the presence of Tregs was validated with qRT-PCR. Time limitations prevented a detailed functional analysis of these candidate genes. Nevertheless, the analysis of the suppressive mechanisms revealed that Tregs probably suppress Th9 cells via the increase of the intracellular cAMP concentration. In contrast, IL-9 production by differentiated Th9 cells was only marginally affected by Tregs in vitro and in vivo analysis (asthma, melanoma model). Hence, Tregs represent very effective inhibitors of Th9 development whereas they have only a minimal suppressive influence on differentiated Th9 cells.rn

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the many cell types that may prove useful to regenerative medicine, mounting evidence suggests that human term placenta-derived cells will join the list of significant contributors. In making new cell therapy-based strategies a clinical reality, it is fundamental that no a priori claims are made regarding which cell source is preferable for a particular therapeutic application. Rather, ongoing comparisons of the potentiality and characteristics of cells from different sources should be made to promote constant improvement in cell therapies, and such comparisons will likely show that individually tailored cells can address disease-specific clinical needs. The principle underlying such an approach is resistance to the notion that comprehensive characterization of any cell type has been achieved, neither in terms of phenotype nor risks-to-benefits ratio. Tailoring cell therapy approaches to specific conditions also requires an understanding of basic disease mechanisms and close collaboration between translational researchers and clinicians, to identify current needs and shortcomings in existing treatments. To this end, the international workshop entitled "Placenta-derived stem cells for treatment of inflammatory diseases: moving toward clinical application" was held in Brescia, Italy, in March 2009, and aimed to harness an understanding of basic inflammatory mechanisms inherent in human diseases with updated findings regarding biological and therapeutic properties of human placenta-derived cells, with particular emphasis on their potential for treating inflammatory diseases. Finally, steps required to allow their future clinical application according to regulatory aspects including good manufacturing practice (GMP) were also considered. In September 2009, the International Placenta Stem Cell Society (IPLASS) was founded to help strengthen the research network in this field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the development of a tool that uses human rights concepts and methods to improve relevant laws, regulations and policies related to sexual and reproductive health. This tool aims to improve awareness and understanding of States' human rights obligations. It includes a method for systematically examining the status of vulnerable groups, involving non-health sectors, fostering a genuine process of civil society participation and developing recommendations to address regulatory and policy barriers to sexual and reproductive health with a clear assignment of responsibility. Strong leadership from the ministry of health, with support from the World Health Organization or other international partners, and the serious engagement of all involved in this process can strengthen the links between human rights and sexual and reproductive health, and contribute to national achievement of the highest attainable standard of health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Airway epithelial cells were shown to drive the differentiation of monocytes into dendritic cells (DCs) with a suppressive phenotype. In this study, we investigated the impact of virus-induced inflammatory mediator production on the development of DCs. Monocyte differentiation into functional DCs, as reflected by the expression of CD11c, CD123, BDCA-4, and DC-SIGN and the capacity to activate T cells, was similar for respiratory syncytial virus (RSV)-infected and mock-infected BEAS-2B and A549 cells. RSV-conditioned culture media resulted in a partially mature DC phenotype, but failed to up-regulate CD80, CD83, CD86, and CCR7, and failed to release proinflammatory mediators upon Toll-like receptor (TLR) triggering. Nevertheless, these DCs were able to maintain an antiviral response by the release of Type I IFN. Collectively, these data indicate that the airway epithelium maintains an important suppressive DC phenotype under the inflammatory conditions induced by infection with RSV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Th17-mediated immune responses have been recently identified as novel pathogenic mechanisms in a variety of conditions; however, their importance in allograft rejection processes is still debated. In this paper, we searched for MHC or minor Ag disparate models of skin graft rejection in which Th17 immune responses might be involved. We found that T cell-derived IL-17 is critical for spontaneous rejection of minor but not major Ag-mismatched skin grafts. IL-17 neutralization was associated with a lack of neutrophil infiltration and neutrophil depletion delayed rejection, suggesting neutrophils as an effector mechanism downstream of Th17 cells. Regulatory T cells (Tregs) appeared to be involved in Th17 reactivity. We found that in vivo Treg depletion prevented IL-17 production by recipient T cells. An adoptive cotransfer of Tregs with naive monospecific antidonor T cells in lymphopenic hosts biased the immune response toward Th17. Finally, we observed that IL-6 was central for balancing Tregs and Th17 cells as demonstrated by the prevention of Th17 differentiation, the enhanced Treg/Th17 ratio, and a net impact of rejection blockade in the absence of IL-6. In conclusion, the ability of Tregs to promote the Th17/neutrophil-mediated pathway of rejection that we have described should be considered as a potential drawback of Treg-based cell therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Allograft acceptance and tolerance can be achieved by different approaches including inhibition of effector T cell responses through CD28-dependent costimulatory blockade and induction of peripheral regulatory T cells (Tregs). The observation that Tregs rely upon CD28-dependent signals for development and peripheral expansion, raises the intriguing possibility of a counterproductive consequence of CTLA4-Ig administration on tolerance induction. We have investigated the possible negative effect of CTLA4-Ig on Treg-mediated tolerance induction using a mouse model of single MHC class II-mismatched skin grafts in which long-term acceptance was achieved by short-term administration of IL-2/anti-IL-2 complex. CTLA4-Ig treatment was found to abolish Treg-dependent acceptance in this model, restoring skin allograft rejection and Th1 alloreactivity. CTLA4-Ig inhibited IL-2-driven Treg expansion, and prevented in particular the occurrence of ICOS(+) Tregs endowed with potent suppressive capacities. Restoring CD28 signaling was sufficient to counteract the deleterious effect of CTLA4-Ig on Treg expansion and functionality, in keeping with the hypothesis that costimulatory blockade inhibits Treg expansion and function by limiting the delivery of essential CD28-dependent signals. Inhibition of regulatory T cell function should therefore be taken into account when designing tolerance protocols based on costimulatory blockade. Copyright 2012 The American Society of Transplantation and the American Society of Transplant Surgeons

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mammals harbor a dense commensal microbiota in the colon. Regulatory T (Treg) cells are known to limit microbe-triggered intestinal inflammation and the CD4+ T cell compartment is shaped by the presence of particular microbes or bacterial compounds. It is, however, difficult to distinguish whether these effects reflect true mutualistic immune adaptation to intestinal colonization or rather idiosyncratic immune responses. To investigate truly mutualistic CD4+ T cell adaptation, we used the altered Schaedler flora (ASF). Intestinal colonization resulted in activation and de novo generation of colonic Treg cells. Failure to activate Treg cells resulted in the induction of T helper 17 (Th17) and Th1 cell responses, which was reversed by wild-type Treg cells. Efficient Treg cell induction was also required to maintain intestinal homeostasis upon dextran sulfate sodium-mediated damage in the colon. Thus, microbiota colonization-induced Treg cell responses are a fundamental intrinsic mechanism to induce and maintain host-intestinal microbial T cell mutualism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Nef protein of HIV-1 is important for AIDS pathogenesis, but it is not targeted by current antiviral strategies. Here, we describe a single-domain antibody (sdAb) that binds to HIV-1 Nef with a high affinity (K(d) = 2 × 10(-9)M) and inhibited critical biologic activities of Nef both in vitro and in vivo. First, it interfered with the CD4 down-regulation activity of a broad panel of nef alleles through inhibition of the Nef effects on CD4 internalization from the cell surface. Second, it was able to interfere with the association of Nef with the cellular p21-activated kinase 2 as well as with the resulting inhibitory effect of Nef on actin remodeling. Third, it counteracted the Nef-dependent enhancement of virion infectivity and inhibited the positive effect of Nef on virus replication in peripheral blood mononuclear cells. Fourth, anti-Nef sdAb rescued Nef-mediated thymic CD4(+) T-cell maturation defects and peripheral CD4(+) T-cell activation in the CD4C/HIV-1(Nef) transgenic mouse model. Because all these Nef functions have been implicated in Nef effects on pathogenesis, this anti-Nef sdAb may represent an efficient tool to elucidate the molecular functions of Nef in the virus life cycle and could now help to develop new strategies for the control of AIDS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context Steroidogenic acute regulatory protein (StAR) is crucial for transport of cholesterol to mitochondria where biosynthesis of steroids is initiated. Loss of StAR function causes lipoid congenital adrenal hyperplasia (LCAH). Objective StAR gene mutations causing partial loss of function manifest atypical and may be mistaken as familial glucocorticoid deficiency. Only a few mutations have been reported. Design To report clinical, biochemical, genetic, protein structure and functional data on two novel StAR mutations, and to compare them with published literature. Setting Collaboration between the University Children's Hospital Bern, Switzerland, and the CIBERER, Hospital Vall d'Hebron, Autonomous University, Barcelona, Spain. Patients Two subjects of a non-consanguineous Caucasian family were studied. The 46,XX phenotypic normal female was diagnosed with adrenal insufficiency at the age of 10 months, had normal pubertal development and still has no signs of hypergonodatropic hypogonadism at 32 years of age. Her 46,XY brother was born with normal male external genitalia and was diagnosed with adrenal insufficiency at 14 months. Puberty was normal and no signs of hypergonadotropic hypogonadism are present at 29 years of age. Results StAR gene analysis revealed two novel compound heterozygote mutations T44HfsX3 and G221S. T44HfsX3 is a loss-of-function StAR mutation. G221S retains partial activity (~30%) and is therefore responsible for a milder, non-classic phenotype. G221S is located in the cholesterol binding pocket and seems to alter binding/release of cholesterol. Conclusions StAR mutations located in the cholesterol binding pocket (V187M, R188C, R192C, G221D/S) seem to cause non-classic lipoid CAH. Accuracy of genotype-phenotype prediction by in vitro testing may vary with the assays employed.