856 resultados para regression algorithm


Relevância:

20.00% 20.00%

Publicador:

Resumo:

As wireless communications evolve towards heterogeneousnetworks, mobile terminals have been enabled tohandover seamlessly from one network to another. At the sametime, the continuous increase in the terminal power consumptionhas resulted in an ever-decreasing battery lifetime. To that end,the network selection is expected to play a key role on howto minimize the energy consumption, and thus to extend theterminal lifetime. Hitherto, terminals select the network thatprovides the highest received power. However, it has been provedthat this solution does not provide the highest energy efficiency.Thus, this paper proposes an energy efficient vertical handoveralgorithm that selects the most energy efficient network thatminimizes the uplink power consumption. The performance of theproposed algorithm is evaluated through extensive simulationsand it is shown to achieve high energy efficiency gains comparedto the conventional approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that regression analyses involving compositional data need special attention because the data are not of full rank. For a regression analysis where both the dependent and independent variable are components we propose a transformation of the components emphasizing their role as dependent and independent variables. A simple linear regression can be performed on the transformed components. The regression line can be depicted in a ternary diagram facilitating the interpretation of the analysis in terms of components. An exemple with time-budgets illustrates the method and the graphical features

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper uses the possibilities provided by the regression-based inequality decomposition (Fields, 2003) to explore the contribution of different explanatory factors to international inequality in CO2 emissions per capita. In contrast to previous emissions inequality decompositions, which were based on identity relationships (Duro and Padilla, 2006), this methodology does not impose any a priori specific relationship. Thus, it allows an assessment of the contribution to inequality of different relevant variables. In short, the paper appraises the relative contributions of affluence, sectoral composition, demographic factors and climate. The analysis is applied to selected years of the period 1993–2007. The results show the important (though decreasing) share of the contribution of demographic factors, as well as a significant contribution of affluence and sectoral composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic algorithm and multiple linear regression (GA-MLR), partial least square (GA-PLS), kernel PLS (GA-KPLS) and Levenberg-Marquardt artificial neural network (L-M ANN) techniques were used to investigate the correlation between retention index (RI) and descriptors for 116 diverse compounds in essential oils of six Stachys species. The correlation coefficient LGO-CV (Q²) between experimental and predicted RI for test set by GA-MLR, GA-PLS, GA-KPLS and L-M ANN was 0.886, 0.912, 0.937 and 0.964, respectively. This is the first research on the QSRR of the essential oil compounds against the RI using the GA-KPLS and L-M ANN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acetylation was performed to reduce the polarity of wood and increase its compatibility with polymer matrices for the production of composites. These reactions were performed first as a function of acetic acid and anhydride concentration in a mixture catalyzed by sulfuric acid. A concentration of 50%/50% (v/v) of acetic acid and anhydride was found to produced the highest conversion rate between the functional groups. After these reactions, the kinetics were investigated by varying times and temperatures using a 3² factorial design, and showed time was the most relevant parameter in determining the conversion of hydroxyl into carbonyl groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

QSAR modeling is a novel computer program developed to generate and validate QSAR or QSPR (quantitative structure- activity or property relationships) models. With QSAR modeling, users can build partial least squares (PLS) regression models, perform variable selection with the ordered predictors selection (OPS) algorithm, and validate models by using y-randomization and leave-N-out cross validation. An additional new feature is outlier detection carried out by simultaneous comparison of sample leverage with the respective Studentized residuals. The program was developed using Java version 6, and runs on any operating system that supports Java Runtime Environment version 6. The use of the program is illustrated. This program is available for download at lqta.iqm.unicamp.br.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analytical curves are normally obtained from discrete data by least squares regression. The least squares regression of data involving significant error in both x and y values should not be implemented by ordinary least squares (OLS). In this work, the use of orthogonal distance regression (ODR) is discussed as an alternative approach in order to take into account the error in the x variable. Four examples are presented to illustrate deviation between the results from both regression methods. The examples studied show that, in some situations, ODR coefficients must substitute for those of OLS, and, in other situations, the difference is not significant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the Russian Wholesale Market, electricity and capacity are traded separately. Capacity is a special good, the sale of which obliges suppliers to keep their generating equipment ready to produce the quantity of electricity indicated by the System Operator. The purpose of the formation of capacity trading was the maintenance of reliable and uninterrupted delivery of electricity in the wholesale market. The price of capacity reflects constant investments in construction, modernization and maintenance of power plants. So, the capacity sale creates favorable conditions to attract investments in the energy sector because it guarantees the investor that his investments will be returned.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work a fuzzy linear system is used to solve Leontief input-output model with fuzzy entries. For solving this model, we assume that the consumption matrix from di erent sectors of the economy and demand are known. These assumptions heavily depend on the information obtained from the industries. Hence uncertainties are involved in this information. The aim of this work is to model these uncertainties and to address them by fuzzy entries such as fuzzy numbers and LR-type fuzzy numbers (triangular and trapezoidal). Fuzzy linear system has been developed using fuzzy data and it is solved using Gauss-Seidel algorithm. Numerical examples show the e ciency of this algorithm. The famous example from Prof. Leontief, where he solved the production levels for U.S. economy in 1958, is also further analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I doktorsavhandlingen undersöks förmågan att lösa hos ett antal lösare för optimeringsproblem och ett antal svårigheter med att göra en rättvis lösarjämförelse avslöjas. Dessutom framläggs några förbättringar som utförts på en av lösarna som heter GAMS/AlphaECP. Optimering innebär, i det här sammanhanget, att finna den bästa möjliga lösningen på ett problem. Den undersökta klassen av problem kan karaktäriseras som svårlöst och förekommer inom ett flertal industriområden. Målet har varit att undersöka om det finns en lösare som är universellt snabbare och hittar lösningar med högre kvalitet än någon av de andra lösarna. Det kommersiella optimeringssystemet GAMS (General Algebraic Modeling System) och omfattande problembibliotek har använts för att jämföra lösare. Förbättringarna som presenterats har utförts på GAMS/AlphaECP lösaren som baserar sig på skärplansmetoden Extended Cutting Plane (ECP). ECP-metoden har utvecklats främst av professor Tapio Westerlund på Anläggnings- och systemteknik vid Åbo Akademi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Machine learning provides tools for automated construction of predictive models in data intensive areas of engineering and science. The family of regularized kernel methods have in the recent years become one of the mainstream approaches to machine learning, due to a number of advantages the methods share. The approach provides theoretically well-founded solutions to the problems of under- and overfitting, allows learning from structured data, and has been empirically demonstrated to yield high predictive performance on a wide range of application domains. Historically, the problems of classification and regression have gained the majority of attention in the field. In this thesis we focus on another type of learning problem, that of learning to rank. In learning to rank, the aim is from a set of past observations to learn a ranking function that can order new objects according to how well they match some underlying criterion of goodness. As an important special case of the setting, we can recover the bipartite ranking problem, corresponding to maximizing the area under the ROC curve (AUC) in binary classification. Ranking applications appear in a large variety of settings, examples encountered in this thesis include document retrieval in web search, recommender systems, information extraction and automated parsing of natural language. We consider the pairwise approach to learning to rank, where ranking models are learned by minimizing the expected probability of ranking any two randomly drawn test examples incorrectly. The development of computationally efficient kernel methods, based on this approach, has in the past proven to be challenging. Moreover, it is not clear what techniques for estimating the predictive performance of learned models are the most reliable in the ranking setting, and how the techniques can be implemented efficiently. The contributions of this thesis are as follows. First, we develop RankRLS, a computationally efficient kernel method for learning to rank, that is based on minimizing a regularized pairwise least-squares loss. In addition to training methods, we introduce a variety of algorithms for tasks such as model selection, multi-output learning, and cross-validation, based on computational shortcuts from matrix algebra. Second, we improve the fastest known training method for the linear version of the RankSVM algorithm, which is one of the most well established methods for learning to rank. Third, we study the combination of the empirical kernel map and reduced set approximation, which allows the large-scale training of kernel machines using linear solvers, and propose computationally efficient solutions to cross-validation when using the approach. Next, we explore the problem of reliable cross-validation when using AUC as a performance criterion, through an extensive simulation study. We demonstrate that the proposed leave-pair-out cross-validation approach leads to more reliable performance estimation than commonly used alternative approaches. Finally, we present a case study on applying machine learning to information extraction from biomedical literature, which combines several of the approaches considered in the thesis. The thesis is divided into two parts. Part I provides the background for the research work and summarizes the most central results, Part II consists of the five original research articles that are the main contribution of this thesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing demand of consumer markets for the welfare of birds in poultry house has motivated many scientific researches to monitor and classify the welfare according to the production environment. Given the complexity between the birds and the environment of the aviary, the correct interpretation of the conduct becomes an important way to estimate the welfare of these birds. This study obtained multiple logistic regression models with capacity of estimating the welfare of broiler breeders in relation to the environment of the aviaries and behaviors expressed by the birds. In the experiment, were observed several behaviors expressed by breeders housed in a climatic chamber under controlled temperatures and three different ammonia concentrations from the air monitored daily. From the analysis of the data it was obtained two logistic regression models, of which the first model uses a value of ammonia concentration measured by unit and the second model uses a binary value to classify the ammonia concentration that is assigned by a person through his olfactory perception. The analysis showed that both models classified the broiler breeder's welfare successfully.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The broiler rectal temperature (t rectal) is one of the most important physiological responses to classify the animal thermal comfort. Therefore, the aim of this study was to adjust regression models in order to predict the rectal temperature (t rectal) of broiler chickens under different thermal conditions based on age (A) and a meteorological variable (air temperature - t air) or a thermal comfort index (temperature and humidity index -THI or black globe humidity index - BGHI) or a physical quantity enthalpy (H). In addition, through the inversion of these models and the expected t rectal intervals for each age, the comfort limits of t air, THI, BGHI and H for the chicks in the heating phase were determined, aiding in the validation of the equations and the preliminary limits for H. The experimental data used to adjust the mathematical models were collected in two commercial poultry farms, with Cobb chicks, from 1 to 14 days of age. It was possible to predict the t rectal of conditions from the expected t rectal and determine the lower and superior comfort thresholds of broilers satisfactorily by applying the four models adjusted; as well as to invert the models for prediction of the environmental H for the chicks first 14 days of life.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is presented a software developed with Delphi programming language to compute the reservoir's annual regulated active storage, based on the sequent-peak algorithm. Mathematical models used for that purpose generally require extended hydrological series. Usually, the analysis of those series is performed with spreadsheets or graphical representations. Based on that, it was developed a software for calculation of reservoir active capacity. An example calculation is shown by 30-years (from 1977 to 2009) monthly mean flow historical data, from Corrente River, located at São Francisco River Basin, Brazil. As an additional tool, an interface was developed to manage water resources, helping to manipulate data and to point out information that it would be of interest to the user. Moreover, with that interface irrigation districts where water consumption is higher can be analyzed as a function of specific seasonal water demands situations. From a practical application, it is possible to conclude that the program provides the calculation originally proposed. It was designed to keep information organized and retrievable at any time, and to show simulation on seasonal water demands throughout the year, contributing with the elements of study concerning reservoir projects. This program, with its functionality, is an important tool for decision making in the water resources management.