988 resultados para reaction pathway
Resumo:
A completely automated temperature-programmed reaction (TPR) system for carrying out gas-solid catalytic reactions under atmospheric flow conditions is fabricated to study CO and hydrocarbon oxidation, and NO reduction. The system consists of an all-stainless steel UHV system, quadrupole mass spectrometer SX200 (VG Scientific), a tubular furnace and micro-reactor, a temperature controller, a versatile gas handling system, and a data acquisition and analysis system. The performance of the system has been tested under standard experimental conditions for CO oxidation over well-characterized Ce1-x-y(La/Y)(y)O2-delta catalysts. Testing of 3-way catalysis with CO, NO and C2H2 to convert to CO2, N-2 and H2O is done with this catalyst which shows complete removal of pollutants below 325 degrees C. Fixed oxide-ion defects in Pt substituted Ce1-y(La/Y)(y)O2-y/2 show higher catalytic activity than Pt ion-substituted CeO2.
Resumo:
We demonstrate the activity of Ce0.78Sn0.2Pt0.02O2-delta, a new catalyst, towards water-gas shift (WGS) reaction. Over 99.5% CO conversion to H-2 is observed at 300 +/- 25 degrees C. Based on different characterization techniques we found that the present catalyst is resistant to deactivation due to carbonate formation and sintering of Pt on the surface when subjected to longer duration of reaction conditions. The catalyst does not require any pre-treatment or activation between start-up/shut-down reaction operations. Formation of side products such as methane, methanol, formaldehyde, coke etc. was not observed under the WGS reaction conditions indicating the high selectivity of the catalyst for H-2. Temperature programmed reduction of the catalyst in hydrogen (H-2-TPR) shows reversible reduction of Ce4+ to Ce3+, Sn4+ to Sn2+ and Pt4+ to Pt-0 oxidation state with oxygen storage capacity (OSC) of 3500 mu mol g(-1) at 80 degrees C. Such high value of OSC indicates the presence of highly activated lattice oxygen. CO oxidation in presence of stoichiometric O-2 shows 100% conversion to CO2 at room temperature. The catalyst also exhibits 100% selectivity for CO2 at room temperature towards preferential oxidation (PROX) of residual CO in presence of excess hydrogen in the feed. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The availability of an electrophoretically homogeneous rabbit penicillin carrier receptor protein (CRP) and rabbit antipenicillin antibody afforded an idealin vitro system to calculate the thermodynamic parameters of the binding of14C benzyl penicillin CRP conjugate (antigen) to the purified rabbit antipenicillin antibody. The thermodynamic parameters of this antigen-antibody reaction has been studied by radio-active assay method by using millipore filter. Equilibrium constant (K) of this reaction has been found to be 2·853×109M−2 and corresponding free energy (ΔG) at 4°C and 37°C has been calculated to be −12·02 and −13·5 kcal/mole, enthalpy (ΔH) and entropy (ΔS) has been found to be 361 kcal/mole and +30 eu/mole respectively. Competitive binding studies of CRP-analogue conjugates with the divalent rabbit antibody has been carried out in the presence of14C-penicilloyl CRP. It was found that 7-deoxy penicillin-CRP complex and 6-amino penicilloyl CRP conjugate binds to the antibody with energies stronger than that with the14C-penicilloyl CRP. All the other analogue conjugates are much weaker in interfering with the binding of the penicilloyl CRP with the antibody. The conjugate of methicillin,o-nitro benzyl penicillin and ticarcillin with CRP do not materially interfere in the process.
Resumo:
The temperature (T) and electric field-to-gas pressure (E/P) dependences of the rate coefficientk for the reaction SF 6 � +SOF4rarrSOF 5 � +SF5 have been measured. ForT<270>k approaches a constant of 2.1×10�9 cm3/s, and for 433>T>270 K,k decreases withT according tok (cm3/s)=0.124 exp [�3.3 lnT(K)]. ForE/Pk has a constant value of about 2.5×10�10 cm3/s, and for 130 V/cm·torr>E/P>60 V/cm·torr, the rate is approximately given byk (cm3/s)sim7.0×10�10 exp (�0.022E/P). The measured rate coefficient is used to estimate the influence of this reaction on SOF4 production from negative, point-plane, glow-type corona discharges in gas mixtures containing SF6 and at least trace amounts of O2 and H2O. A chemical kinetics model of the ion-drift region in the discharge gap is used to fit experimental data on SOF4 yields assuming that the SF 6 � +SOF4 reaction is the predominant SOF4 loss mechanism. It is found that the contribution of this reaction to SOF4 destruction falls considerably below the estimated maximum effect assuming that SF 6 � is the predominant charge carrier which reacts only with SOF4. The results of this analysis suggest that SF 6 � is efficiently deactivated by other reactions, and the influence of SF 6 � +SOF4 on SOF4 production is not necessarily more significant than that of other slower secondary processes such as gas-phase hydrolysis
Resumo:
The enzymatic pathway for the synthesis of sn-glycerol 3-phosphate was investigated in developing groundnut seeds (Arachis hypogaea). Glycerol-3-phosphate dehydrogenase was not detected in this tissue but an active glycerokinase was demonstrated in the cytosolic fraction. It showed an optimum pH at 8.6 and positive cooperative interactions with both glycerol and ATP. Triosephosphate isomerase and glyceraldehyde-3-phosphate phosphatase were observed mainly in the cytosolic fraction while an active glyceraldehyde reductase was found mainly in the mitochondrial and microsomal fractions. The glyceraldehyde 3-phosphate phosphatase showed specificity and positive cooperativity with respect to glyceraldehyde 3-phosphate. The glyceraldehyde reductase was active toward glucose and fructose but not toward formaldehyde and showed absolute specificity toward NADPH. It is concluded that in the developing groundnut seed, sn-glycerol 3-phosphate is synthesized essentially by the pathway dihydroxyacetone phosphate ? glyceraldehyde 3-phosphate ?Pi glyceraldehyde ?NADPH glycerol ?ATP glycerol 3-phosphate. All the enyzmes of this pathway showed activity profiles commensurate with their participation in triacylglycerol synthesis which is maximal during the period 15�35 days after fertilization. Glycerokinase appears to be the rate-limiting enzyme in this pathway.
Resumo:
A total synthesis of the bioactive tetracyclic natural product acremine G has been achieved in which a regio- and stereoselective biomimetic Diels-Alder reaction between two readily assembled building blocks, accelerated on a solid support (silica gel), forms the key step. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The water gas shift reaction was carried out over noble metal ion substituted nanocrystalline oxide catalysts with different supports. Spectroscopic studies of the catalysts before and after the reaction showed different surface phenomena occurring over the catalysts. Reaction mechanisms were proposed based upon the surface processes and intermediates formed. The dual site mechanism utilizing the oxide ion vacancies for water dissociation and metal ions for CO adsorption was proposed to describe the kinetics of the reaction over the reducible oxides like CeO2. A mechanism based on the interaction of adsorbed CO and the hydroxyl group was proposed for the reaction over ZrO2. A hybrid mechanism based on oxide ion vacancies and surface hydroxyl groups was proposed for the reaction over TiO2. The deactivation of the catalysts was also found to be support dependent. Kinetic models for both activation and deactivation were proposed. (C) 2010 American Institute of Chemical Engineers AIChE J, 56: 2662-2676, 2010
Resumo:
Reaction of 8-methyl-2-naphthol (4a) with the quinone3 gave a mixture of 8-methyl-2,2-(tetrachlorohenylenedioxy)naphthalen-1(2H)-one (1b) and 8-methyl-1,1-(tetrachloro-o-phenylenedioxy)naphthalen-2(1H)-one (2b) in almost equal amounts. Similarly, reaction of the naphthols (4b), (4d) and (4e) with3 gave the corresponding dienones (1c &2c), (1e &2e) and (1f &2f) in almost equal amounts. Reaction of 8-t-butyl-2-naphthol (4c) with3 gave exclusively 8-t-butyl-2,2-(tetrachloro--henylenedioxy)-naphthalen-1(2H)-one (1d). Oxidation of 3-t-butyl-2-naphthol (4f) with3 gave a mixture of 3-t-butyl-2,2-(tetrachloro-o-phenylendioxy) nephthalene-1(2H)-one(1g) and 3-t-butyl-1,1-(tetrachloro--phenylenedioxy)naphthelen-2 (1H)-one (2g) in the ratio 1∶6. Thus, onlyt-butyl group exherts pronounced steric influence on the rearrangement observed in the reaction of β-naphthol with the quinone3. Structures of all the compounds have been established by spectral data.
Resumo:
The insulin-like growth factors (IGEs; IGF-1 and IGF-2) play central roles in cell growth, differentiation, survival, transformation and metastasis. The biologic effects of the IGFs are mediated by the IGF-1 receptor (IGF-1R), a receptor tyrosine kinase with homology to the insulin receptor (IR). Dysregulation of the ICE system is well recognized as a key contributor to the progression of multiple cancers, with IGF-1R activation increasing the tumorigenic potential of breast, prostate, lung, colon and head and neck squamous cell carcinoma (HNSCC). Despite this relationship, targeting the IGF-1R has only recently undergone development as a molecular cancer therapeutic. As it has taken hold, we are witnessing a robust increase and interest in targeting the inhibition of IGF-1R signaling. This is accentuated by the list of over 30 drugs, including monoclonal antibodies (mAbs) and tyrosine kinase inhibitors (TKIs) that are under evaluation as single agents or in combination therapies 1]. The ICE-binding proteins (IGFBPs) represent the third component of the ICE system consisting of a class of six soluble secretory proteins. They represent a unique class of naturally occurring ICE-antagonists that bind to and sequester IGF-1 and IGF-2, inhibiting their access to the IGF-1R. Due to their dual targeting of the IGFs without affecting insulin action, the IGFBPs are an untapped ``third'' class of IGF-1R inhibitors. in this commentary, we highlight some of the significant aspects of and prospects for targeting the IGF-1R and describe what the future may hold. (C) 2010 Elsevier Inc. All rights reserved.