929 resultados para rare earth metals
Resumo:
Compilation of the recent literature from the Southern Alps and adjacent area confirms the geochemical variations of unusual amplitudes during the Permian-Triassic boundary interval (PTBI). A great attention has been given to the negative δ13C anomaly within the Tesero Member close to the Permian-Triassic boundary. Very detailed geochemical works have been done on the scientific Gartnerkofel core (Gk-1) and on the Slovenian sections. Major minor and rare earth elements (REE) data are reported and show a marked enrichment in alkaline metals and REE of some levels of the boundary interval. But recent studies show that the low Iridium anomalies and the Osmium and Helium isotopes anomalies lack the characteristics of a large extraterrestrial impact.
Resumo:
This thesis presents experimental studies of rare earth (RE) metal induced structures on Si(100) surfaces. Two divalent RE metal adsorbates, Eu and Yb, are investigated on nominally flat Si(100) and on vicinal, stepped Si(100) substrates. Several experimental methods have been applied, including scanning tunneling microscopy/spectroscopy (STM/STS), low energy electron diffraction (LEED), synchrotron radiation photoelectron spectroscopy (SR-PES), Auger electron spectroscopy (AES), thermal desorption spectroscopy (TDS), and work function change measurements (Δφ). Two stages can be distinguished in the initial growth of the RE/Si interface: the formation of a two-dimensional (2D) adsorbed layer at submonolayer coverage and the growth of a three-dimensional (3D) silicide phase at higher coverage. The 2D phase is studied for both adsorbates in order to discover whether they produce common reconstructions or reconstructions common to the other RE metals. For studies of the 3D phase Yb is chosen due to its ability to crystallize in a hexagonal AlB2 type lattice, which is the structure of RE silicide nanowires, therefore allowing for the possibility of the growth of one-dimensional (1D) wires. It is found that despite their similar electronic configuration, Eu and Yb do not form similar 2D reconstructions on Si(100). Instead, a wealth of 2D structures is observed and atomic models are proposed for the 2×3-type reconstructions. In addition, adsorbate induced modifications on surface morphology and orientational symmetry are observed. The formation of the Yb silicide phase follows the Stranski-Krastanov growth mode. Nanowires with the hexagonal lattice are observed on the flat Si(100) substrate, and moreover, an unexpectedly large variety of growth directions are revealed. On the vicinal substrate the growth of the silicide phase as 3D islands and wires depends drastically on the growth conditions. The conditions under which wires with high aspect ratio and single orientation parallel to the step edges can be formed are demonstrated.
Resumo:
The use of catalysts in chemical and refining processes has increased rapidly since 1945, when oil began to replace coal as the most important industrial raw material. Catalysis has a major impact on the quality of human life as well as economic development. The demand for catalysts is still increasing since catalysis is looked up as a solution to eliminate or replace polluting processes. Metal oxides represent one of the most important and widely employed classes of solid catalysts. Much effort has been spent in the preparation, characterization and application of metal oxides. Recently, great interest has been devoted to the cerium dioxide (CeO2) containing materials due to their broad range of applications in various fields, ranging from catalysis to ceramics, fuel cell technologies, gas sensors, solid state electrolytes, ceramic biomaterials, etc., in addition to the classical application of CeO2 as an additive in the so-called three way catalysts (TWC) for automotive exhaust treatment. Moreover, it can promote water gas shift and steam reforming reactions, favours catalytic activity at the interfacial metal-support sites. The solid solutions of ceria with Group IV transitional-metals deserve particular attention for their applicability in various technologically important catalytic processes. Mesoporous CeO2−ZrO2 solid solutions have been reported to be employed in various reactions which include CO oxidation, soot oxidation, water-gas shift reaction, and so on. Inspired by the unique and promising characteristics of ceria based mixed oxides and solid solutions for various applications, we have selected ceria-zirconia oxides for our studies. The focus of the work is the synthesis and investigation of the structural and catalytic properties of modified and pure ceria-zirconia mixed oxide.
Resumo:
The distribution and accumulation of the rare earth elements (REE) in the sediments of the Cochin Estuary and adjacent continental shelf were investigated. The rare earth elements like La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and the heavy metals like Mg, V, Cr, Mn, Fe, Cu, Zn, U, Th were analysed by using standard analytical methods. The Post-Archean Australian Shale composition was used to normalise the rare earth elements. It was found that the sediments were more enriched with the lighter rare earth elements than the heavier ones. The positive correlation between the concentrations of REE, Fe and Mn could explain the precipitation of oxyhydroxides in the study area. The factor analysis and correlation analysis suggest common sources of origin for the REEs. From the Ce-anomalies calculated, it was found that an oxic environment predominates in all stations except the station No. 2. The Eu-anomaly gave an idea that the origin of REEs may be from the feldspar. The parameters like total organic carbon, U/Th ratio, authigenic U, Cu/Zn, V/Cr ratios revealed the oxic environment and thus the depositional behaviour of REEs in the region
Resumo:
A 172 cm-long sediment core was collected from a small pristine lake situated within a centripetal drainage basin in a tropical karst environment (Ribeira River valley, southeastern Brazil) in order to investigate the paleoenvironmental record provided by the lacustrine geochemistry. Sediments derived from erosion of the surrounding cambisoils contain quartz, kaolinite, mica, chlorite and goethite. Accelerator mass spectroscopy (AMS) (14)C dating provided the geochronological framework. Three major sedimentary units were identified based on the structure and color of the sediments: Unit III from 170 to 140 cm (1030 +/- 60-730 +/- 60 yr BP), Unit II from 140 to 90 cm (730 +/- 60-360 +/- 60 yr BP) and Unit I from 90 to 0 cm (360 +/- 60-0 yr BP). Results of major and trace element concentrations were analysed through multivariate statistical techniques. Factor analysis provided three factors accounting for 72.4% of the total variance. F1 and F2 have high positive loadings from K, Ba, Cs, Rb, Sr, Sc, Th, light rare earth element (LREE), Fe, Cr, Ti, Zr, Hf and Ta, and high negative loadings from Mg, Co, Cu, Zn, Br and loss on ignition (LOI). F3, with positive loadings from V and non-metals As and Sb, accounts for a low percentage (9.7%) of the total variance, being therefore of little interpretative use. The profile distribution of F1 scores reveals negative values in Units I and III, and positive values in Unit II, meaning that K, Ba, Cs, Rb, Sr, Sc, Th, LREE, Fe, Cr, Ti, Zr, Hf and Ta are relatively more concentrated in Unit II, and Mg, Co, Cu, Zn and Br are relatively more abundant in Units I and III. The observed fluctuations in the geochemical composition of the sediments are consistent with slight variations of the erosion intensity in the catchment area as a possible response to variations of climatic conditions during the last millennium. (c) 2009 Elsevier GmbH. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The tin dioxide is an n-type semiconductor, which exhibits varistor behavior with high capacity of absorption of energy, whose function is to restrict transitory over-voltages without being destroyed, when it is doped with some oxides. Varistors are used in alternated current fields as well as in continuous current, and it can be applied in great interval of voltages or in great interval of currents. The electric properties of the varistor depend on the defects that happen at the grain boundaries and the adsorption of oxygen. The (98.90-x)%SnO2.0.25%CoO+0.75%MnO2+0.05%Ta2O5+0.05%Tr2O3 systems, in which Tr=La or Nd. Current-voltage measurements were accomplished for determination of the non-linear coefficient were studied. SEM microstructure analysis was made to evaluate the microstructural characteristics of the systems. The results showed that the rare-earth oxides have influenced the electrical behavior presented by the system. (C) 2002 Kluwer Academic Publishers.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Os manguezais do estado do Pará representam importante segmento da costa norte brasileira sobre os quais pouco se conhece das características geológicas e as relações com área(s)-fonte. A pesquisa foi realizada no estuário do rio Marapanim, na costa paraense, para demonstrar a contribuição de sedimentos continentais para a formação dos sedimentos dos manguezais. Foram coletados sedimentos da Formação Barreiras e solos dela derivados (principais fontes terrígenas), e os sedimentos de manguezal. Nos sedimentos de manguezal foram realizadas análises granulométricas, determinação dos teores de carbono (C %) e medidas de pH, Eh e salinidade intersticial. A determinação mineralógica e a geoquímica multi-elementar foi feita nos sedimentos lamosos e nos sedimentos continentais adjacentes, para comparações. Os sedimentos de manguezal são sílticoargilosos (> 90 %), com teores de carbono entre 0,75 a 3,5 %. A mineralogia principal é composta por quartzo, goethita, hematita, caulinita, illita, além de zircão, turmalina, estaurolita e cianita como acessórios, assinatura mineralógica típica dos sedimentos da Formação Barreiras e dos solos. De ocorrência comum nesses manguezais, os minerais neoformados são: esmectita, feldspato potássico, pirita, halita, gipso e a jarosita. O enriquecimento em SiO2, Al2O3, Fe2O3, e TiO2 nos manguezais e os níveis crustais dos metais-traço refletem o clima tropical e a composição mineralógica da área-fonte, rica em quartzo e caulinita e a ausência de influência antrópica. A composição química associada à matéria orgânica, abundantes diatomáceas além de Fe, S e os aportes de Cl-, Na+, K+, Ca++ e Mg++ da água do mar, identificam o ambiente deposicional e os minerais autigênicos. O padrão de fracionamento dos elementos-traço nos manguezais também corrobora a marcante contribuição da área-fonte continental. Esses sedimentos apresentam o predomínio dos Elementos Terras Rara Leves (ETRL) sobre os Elementos Terras Raras Pesados (ETRP) com elevadas razões de Th/Co; La/Th; La/Sc; La/Co e Zr/Sc e Th/ Sc e Ba/Co, elementos presentes nas rochas ígneas félsicas que originaram os sedimentos terrígenos.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Using inert gas condensation techniques the properties of sputtered neodymium-iron-born clusters were investigated. A D.C. magnetron sputtering source created vaporous Nd-Fe-B which was then condensed into clusters and deposited onto silicon substrates. A composite target of Nd-Fe-B discs on an iron plate and a composite target of Nd-(Fe-Co)-B were utilized to create clusters. The clusters were coated with a carbon layer through R.F. sputtering to prevent oxidation. Samples were investigated in the TEM and showed a size distribution with an average particle diameter of 8.11 nm. The clusters, upon deposition, were amorphous as indicated by diffuse diffraction patterns obtained through SAD. The EDS showed compositionally a direct correlation in the ratio of rare-earth to transition metals between the target and deposited samples. The magnetic properties of the as-deposited clusters showed superparamagnetic properties at high temperatures and ferromagnetic properties at low temperatures; these properties are indicative of rare-earth transition metal amorphous clusters. Annealing of samples showed an initial increase in the coercivity. Samples were annealed in an inert gas atmosphere at 600o C for increasing amounts of time. The samples showed an initial increase in coercivity, but showed no additional increases with additional annealing time. SAD of annealed cluster samples showed the presence of Nd2Fe17 and a bcc-Nd phase. The bcc-Nd is the result of oxidation at high temperatures created during annealing and surface interface energy. The magnetic properties of the annealed samples showed weak coercivity and a saturation magnetization equivalent to that of Nd2Fe17. The annealed clusters showed a slight increase in coercivity at low temperatures. These results indicate a loss of boron during the sputtering process.
Resumo:
In summer 2005, two pilot snow/firn cores were obtained at 5365 and 5206 m a.s.l. on Fedchenko glacier, Pamirs, Tajikistan, the world's longest and deepest alpine glacier. The well-defined seasonal layering appearing in stable-isotope and trace element distribution identified the physical links controlling the climate and aerosol concentration signals. Air temperature and humidity/precipitation were the primary determinants of stable-isotope ratios. Most precipitation over the Pamirs originated in the Atlantic. In summer, water vapor was re-evaporated from semi-arid regions in central Eurasia. The semi-arid regions contribute to non-soluble aerosol loading in snow accumulated on Fedchenko glacier. In the Pamir core, concentrations of rare earth elements, major and other elements were less than those in the Tien Shan but greater than those in Antarctica, Greenland, the Alps and the Altai. The content of heavy metals in the Fedchenko cores is 2-14 times lower than in the Altai glaciers. Loess from Afghan-Tajik deposits is the predominant lithogenic material transported to the Pamirs. Trace elements generally showed that aerosol concentration tended to increase on the windward slopes during dust storms but tended to decrease with altitude under clear conditions. The trace element profile documented one of the most severe droughts in the 20th century.
Resumo:
In 2004, Integrated Ocean Drilling Program Expedition 302 (Arctic Coring Expedition, ACEX) to the Lomonosov Ridge drilled the first Central Arctic Ocean sediment record reaching the uppermost Cretaceous (~430 m composite depth). While the Neogene part of the record is characterized by grayish-yellowish siliciclastic material, the Paleogene part is dominated by biosiliceous black shale-type sediments. The lithological transition between Paleogene and Neogene deposits was initially interpreted as a single sedimentological unconformity (hiatus) of ~26 Ma duration, separating Eocene from Miocene strata. More recently, however, continuous sedimentation on Lomonosov Ridge throughout the Cenozoic was proclaimed, questioning the existence of a hiatus. In this context, we studied the elemental and mineralogical sediment composition around the Paleogene-Neogene transition at high resolution to reconstruct variations in the depositional regime (e.g. wave/current activity, detrital provenance, and bottom water redox conditions). Already below the hiatus, mineralogical and geochemical proxies imply drastic changes in sediment provenance and/or weathering intensity in the hinterland, and point to the existence of another, earlier gap in the sediment record. The sediments directly overlying the hiatus (the Zebra interval) are characterized by pronounced and abrupt compositional changes that suggest repeated erosion and re-deposition of material. Regarding redox conditions, euxinic bottom waters prevailed at the Eocene Lomonosov Ridge, and became even more severe directly before the hiatus. With detrital sedimentation rates decreasing, authigenic trace metals were highly enriched in the sediment. This continuous authigenic trace metal enrichment under persistent euxinia implies that the Arctic trace metal pool was renewed continuously by water mass exchange with the world ocean, so the Eocene Arctic Ocean was not fully restricted. Above the hiatus, extreme positive Ce anomalies are clear signs of a periodically well-oxygenated water column, but redox conditions were highly variable during deposition of the Zebra interval. Significant Mn enrichments only occur above the Zebra interval, documenting the Miocene establishment of stable oxic conditions in the Arctic Ocean. In summary, extreme and abrupt changes in geochemistry and mineralogy across the studied sediment section do not suggest continuous sedimentation at the Lomonosov Ridge around the Eocene-Miocene transition, but imply repeated periods of very low sedimentation rates and/or erosion.