960 resultados para radar remote sensing


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Traditional field sampling approaches for ecological studies of restored habitat can only cover small areas in detail, con be time consuming, and are often invasive and destructive. Spatially extensive and non-invasive remotely sensed data can make field sampling more focused and efficient. The objective of this work was to investigate the feasibility and accuracy of hand-held and airborne remotely sensed data to estimate vegetation structural parameters for an indicator plant species in a restored wetland. High spatial resolution, digital, multispectral camera images were captured from an aircraft over Sweetwater Marsh (San Diego County, California) during each growing season between 1992-1996. Field data were collected concurrently, which included plant heights, proportional ground cover and canopy architecture type, and spectral radiometer measurements. Spartina foliosa (Pacific cordgrass) is the indicator species for the restoration monitoring. A conceptual model summarizing the controls on the spectral reflectance properties of Pacific cordgrass was established. Empirical models were developed relating the stem length, density, and canopy architecture of cordgrass to normalized-difference-vegetation-index values. The most promising results were obtained from empirical estimates of total ground cover using image data that had been stratified into high, middle, and low marsh zones. As part of on-going restoration monitoring activities, this model is being used to provide maps of estimated vegetation cover.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Montreal Process indicators are intended to provide a common framework for assessing and reviewing progress toward sustainable forest management. The potential of a combined geometrical-optical/spectral mixture analysis model was assessed for mapping the Montreal Process age class and successional age indicators at a regional scale using Landsat Thematic data. The project location is an area of eucalyptus forest in Emu Creek State Forest, Southeast Queensland, Australia. A quantitative model relating the spectral reflectance of a forest to the illumination geometry, slope, and aspect of the terrain surface and the size, shape, and density, and canopy size. Inversion of this model necessitated the use of spectral mixture analysis to recover subpixel information on the fractional extent of ground scene elements (such as sunlit canopy, shaded canopy, sunlit background, and shaded background). Results obtained fron a sensitivity analysis allowed improved allocation of resources to maximize the predictive accuracy of the model. It was found that modeled estimates of crown cover projection, canopy size, and tree densities had significant agreement with field and air photo-interpreted estimates. However, the accuracy of the successional stage classification was limited. The results obtained highlight the potential for future integration of high and moderate spatial resolution-imaging sensors for monitoring forest structure and condition. (C) Elsevier Science Inc., 2000.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Urbanization and the ability to manage for a sustainable future present numerous challenges for geographers and planners in metropolitan regions. Remotely sensed data are inherently suited to provide information on urban land cover characteristics, and their change over time, at various spatial and temporal scales. Data models for establishing the range of urban land cover types and their biophysical composition (vegetation, soil, and impervious surfaces) are integrated to provide a hierarchical approach to classifying land cover within urban environments. These data also provide an essential component for current simulation models of urban growth patterns, as both calibration and validation data. The first stages of the approach have been applied to examine urban growth between 1988 and 1995 for a rapidly developing area in southeast Queensland, Australia. Landsat Thematic Mapper image data provided accurate (83% adjusted overall accuracy) classification of broad land cover types and their change over time. The combination of commonly available remotely sensed data, image processing methods, and emerging urban growth models highlights an important application for current and next generation moderate spatial resolution image data in studies of urban environments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An assessment of the changes in the distribution and extent of mangroves within Moreton Bay, southeast Queensland, Australia, was carried out. Two assessment methods were evaluated: spatial and temporal pattern metrics analysis, and change detection analysis. Currently, about 15,000 ha of mangroves are present in Moreton Bay. These mangroves are important ecosystems, but are subject to disturbance from a number of sources. Over the past 25 years, there has been a loss of more than 3800 ha, as a result of natural losses and mangrove clearing (e.g. for urban and industrial development, agriculture and aquaculture). However, areas of new mangroves have become established over the same time period, offsetting these losses to create a net loss of about 200 ha. These new mangroves have mainly appeared in the southern bay region and the bay islands, particularly on the landward edge of existing mangroves. In addition, spatial patterns and species composition of mangrove patches have changed. The pattern metrics analysis provided an overview of mangrove distribution and change in the form of single metric values, while the change detection analysis gave a more detailed and spatially explicit description of change. An analysis of the effects of spatial scales on the pattern metrics indicated that they were relatively insensitive to scale at spatial resolutions less than 50 m, but that most metrics became sensitive at coarser resolutions, a finding which has implications for mapping of mangroves based on remotely sensed data. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Soil erosion is a major environmental issue in Australia. It reduces land productivity and has off-site effects of decreased water quality. Broad-scale spatially distributed soil erosion estimation is essential for prioritising erosion control programs and as a component of broader assessments of natural resource condition. This paper describes spatial modelling methods and results that predict sheetwash and rill erosion over the Australian continent using the revised universal soil loss equation (RUSLE) and spatial data layers for each of the contributing environmental factors. The RUSLE has been used before in this way but here we advance the quality of estimation. We use time series of remote sensing imagery and daily rainfall to incorporate the effects of seasonally varying cover and rainfall intensity, and use new digital maps of soil and terrain properties. The results are compared with a compilation of Australian erosion plot data, revealing an acceptable consistency between predictions and observations. The modelling results show that: (1) the northern part of Australia has greater erosion potential than the south; (2) erosion potential differs significantly between summer and winter; (3) the average erosion rate is 4.1 t/ha. year over the continent and about 2.9 x 10(9) tonnes of soil is moved annually which represents 3.9% of global soil erosion from 5% of world land area; and (4) the erosion rate has increased from 4 to 33 times on average for agricultural lands compared with most natural vegetated lands.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This Letter evaluates several narrow-band indices from EO-1 Hyperion imagery in discriminating sugarcane areas affected by 'orange rust' ( Puccinia kuehnii ) disease. Forty spectral vegetation indices (SVIs), focusing on bands related to leaf pigments, leaf internal structure, and leaf water content, were generated from an image acquired over Mackay, Queensland, Australia. Discriminant function analysis was used to select an optimum set of indices based on their correlations with the discriminant function. The predictive ability of each index was also assessed based on the accuracy of classification. Results demonstrated that Hyperion imagery can be used to detect orange rust disease in sugarcane crops. While some indices that only used visible near-infrared (VNIR) bands (e.g. SIPI and R800/R680) offer separability, the combination of VNIR bands with the moisture-sensitive band (1660 nm) yielded increased separability of rust-affected areas. The newly formulated 'Disease-Water Stress Indices' (DWSI-1=R800/R1660; DSWI-2=R1660/R550; DWSI-5=(R800+R550)/(R1660+R680)) produced the largest correlations, indicating their superior ability to discriminate sugarcane areas affected by orange rust disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The applicability of image calibration to like-values in mapping water quality parameters from multitemporal images is explored, Six sets of water samples were collected at satellite overpasses over Moreton Bay, Brisbane, Australia. Analysis of these samples reveals that waters in this shallow bay are mostly TSS-dominated, even though they are occasionally dominated by chlorophyll as well. Three of the images were calibrated to a reference image based on invariant targets. Predictive models constructed from the reference image were applied to estimating total suspended sediment (TSS) and Secchi depth from another image at a discrepancy of around 35 percent. Application of the predictive model for TSS concentration to another image acquired at a time of different water types resulted in a discrepancy of 152 percent. Therefore, image calibration to like-values could be used to reliably map certain water quality parameters from multitemporal TM images so long as the water type under study remains unchanged. This method is limited in that the mapped results could be rather inaccurate if the water type under study has changed considerably. Thus, the approach needs to be refined in shallow water from multitemporal satellite imagery.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quantifying mass and energy exchanges within tropical forests is essential for understanding their role in the global carbon budget and how they will respond to perturbations in climate. This study reviews ecosystem process models designed to predict the growth and productivity of temperate and tropical forest ecosystems. Temperate forest models were included because of the minimal number of tropical forest models. The review provides a multiscale assessment enabling potential users to select a model suited to the scale and type of information they require in tropical forests. Process models are reviewed in relation to their input and output parameters, minimum spatial and temporal units of operation, maximum spatial extent and time period of application for each organization level of modelling. Organizational levels included leaf-tree, plot-stand, regional and ecosystem levels, with model complexity decreasing as the time-step and spatial extent of model operation increases. All ecosystem models are simplified versions of reality and are typically aspatial. Remotely sensed data sets and derived products may be used to initialize, drive and validate ecosystem process models. At the simplest level, remotely sensed data are used to delimit location, extent and changes over time of vegetation communities. At a more advanced level, remotely sensed data products have been used to estimate key structural and biophysical properties associated with ecosystem processes in tropical and temperate forests. Combining ecological models and image data enables the development of carbon accounting systems that will contribute to understanding greenhouse gas budgets at biome and global scales.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dust storm of 23 October 2002 covered most of eastern Australia and carried one of the largest recorded dust loads in Australia. In the 6 months leading up to the event, severe drought conditions in eastern Australia, plus above average maximum temperatures resulted in high potential evapo-transpiration rates, producing severe soil moisture deficits and reduced vegetation cover. Although increased wind speeds associated with a fast moving cold front were the meteorological driving force, these winds speeds were lower than those for the previously documented large dust storms. The dust storm was 2400 km long, up to 400 km across and 1.5-2.5 km in height. The plume area was estimated at 840,860 km 2 and the dust load at 0900 h was 3.35-4.85 million tones (Mt). These dust load estimates are highly sensitive to assumptions, regarding visibility-dust concentration relationships, vertical dust concentration profiles and dust ceilings. The event is examined using meteorological records, remote sensing and air quality monitoring. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multitemporal Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) imagery was used to assess coastline morphological changes in southeastern Brazil. A spectral linear mixing approach (SLMA) was used to estimate fraction imagery representing amounts of vegetation, clean water (a proxy for shade) and soil. Fraction abundances were related to erosive and depositional features. Shoreline, sandy banks (including emerged and submerged banks) and sand spits were highlighted mainly by clean water and soil fraction imagery. To evaluate changes in the coastline geomorphic features, the fraction imagery generated for each data set was classified in a contextual approach using a segmentation technique and ISOSEG, an unsupervised classification. Evaluation of the classifications was performed visually and by an error matrix relating ground-truth data to classification results. Comparison of the classification results revealed an intense transformation in the coastline, and that erosive and depositional features are extremely dynamic and subject to change in short periods of time.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents major findings from a recent study aiming to systematically determine suitable river sections for local domestic water supply along the Yangtze River in Jiangsu Province, China. On the basis of analysis on the current riverbank utilization and bank stability, accessible and stable river sections in the region were selected. The water quality in these river sections was then studied using a two-dimensional unsteady flow and pollutant transport/transformation model, RBFVM-2D. The model was calibrated and verified against the hydrodynamic data, water quality data and remote sensing data collected from the river. The investigation on the pollution sources along the river identified 56 main pollution point sources. The pollution zones downstream of these point sources are the main threat for the water quality in the river. The model was used to compute the pollution zones. In particular, simulations were conducted to establish the relationship between the extent of the pollution zone and the wastewater discharge rate of the associated point source. These water quality simulation results were combined with the riverbank stability analysis to determine suitable river sections for local domestic water supply.