886 resultados para pseudomonas aeruginosa


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Few attempts have been made to improve the activity of plant compounds with low antimicrobial efficacy. (+)-Catechin, a weak antimicrobial tea flavanol, was combined with putative adjuncts and tested against different species of bacteria. Copper(II) sulphate enhanced (+)-catechin activity against Pseudomonas aeruginosa but not Staphylococcus aureus, Proteus mirabilis or Escherichia coli. Attempts to raise the activity of (+)-catechin against two unresponsive species, S. aureus and E. coli, with iron(II) sulphate, iron(III) chloride, and vitamin C, showed that iron(II) enhanced (+)-catechin against S. aureus, but not E. coli; neither iron(III) nor combined iron(II) and copper(II), enhanced (+)-catechin activity against either species. Vitamin C enhanced copper(II) containing combinations against both species in the absence of iron(II). Catalase or EDTA added to active samples removed viability effects suggesting that active mixtures had produced H2O2via the action of added metal(II) ions. H2O2 generation by (+)-catechin plus copper(II) mixtures and copper(II) alone could account for the principal effect of bacterial growth inhibition following 30 minute exposures as well as the antimicrobial effect of (+)-catechin–iron(II) against S. aureus. These novel findings about a weak antimicrobial flavanol contrast with previous knowledge of more active flavanols with transition metal combinations. Weak antimicrobial compounds like (+)-catechin within enhancement mixtures may therefore be used as efficacious agents. (+)-Catechin may provide a means of lowering copper(II) or iron(II) contents in certain crop protection and other products.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There has been a recent surge in the use of silver as an antimicrobial agent in a wide range of domestic and clinical products, intended to prevent or treat bacterial infections and reduce bacterial colonization of surfaces. It has been reported that the antibacterial and cytotoxic properties of silver are affected by the assay conditions, particularly the type of growth media used in vitro. The toxicity of Ag+ to bacterial cells is comparable to that of human cells. We demonstrate that biologically relevant compounds such as glutathione, cysteine and human blood components significantly reduce the toxicity of silver ions to clinically relevant pathogenic bacteria and primary human dermal fibroblasts (skin cells). Bacteria are able to grow normally in the presence of silver nitrate at >20-fold the minimum inhibitory concentration (MIC) if Ag+ and thiols are added in a 1:1 ratio because the reaction of Ag+ with extracellular thiols prevents silver ions from interacting with cells. Extracellular thiols and human serum also significantly reduce the antimicrobial activity of silver wound dressings Aquacel-Ag (Convatec) and Acticoat (Smith & Nephew) to Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli in vitro. These results have important implications for the deployment of silver as an antimicrobial agent in environments exposed to biological tissue or secretions. Significant amounts of money and effort have been directed at the development of silver-coated medical devices (e.g. dressings, catheters, implants). We believe our findings are essential for the effective design and testing of antimicrobial silver coatings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although premature infants are increasingly surviving the neonatal period, up to one-third develop bronchopulmonary dysplasia (BPD). Despite evidence that bacterial colonization of the neonatal respiratory tract by certain bacteria may be a risk factor in BPD development, little is known about the role these bacteria play. The aim of this study was to investigate the use of culture-independent molecular profiling methodologies to identify potential etiological agents in neonatal airway secretions. This study used terminal restriction fragment length polymorphism (T-RFLP) and clone sequence analyses to characterize bacterial species in endo-tracheal (ET) aspirates from eight intubated pre-term infants. A wide range of different bacteria was identified in the samples. Forty-seven T-RF band lengths were resolved in the sample set, with a range of 0-15 separate species in each patient. Clone sequence analyses confirmed the identity of individual species detected by T-RFLP. We speculate that the identification of known opportunistic pathogens including S. aureus, Enterobacter sp., Moraxella catarrhalis, Pseudomonas aeruginosa and Streptococcus sp., within the airways of pre-term infants, might be causally related to the subsequent development of BPD. Further, we suggest that culture-independent techniques, such as T-RFLP, hold important potential for the characterization of neonatal conditions, such as BPD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dispersal provides the opportunity to escape harm and colonize new patches, enabling populations to expand and persist. However, the benefits of dispersal associated with escaping harm will be dependent on the structure of the environment and the likelihood of escape. Here, we empirically investigate how the spatial distribution of a parasite influences the evolution of host dispersal. Bacteriophages are a strong and common threat for bacteria in natural environments and offer a good system with which to explore parasite-mediated selection on host dispersal. We used two transposon mutants of the opportunistic bacteria, Pseudomonas aeruginosa, which varied in their motility (a disperser and a nondisperser), and the lytic bacteriophage ФKZ. The phage was distributed either in the central point of colony inoculation only, thus offering an escape route for the dispersing bacteria; or, present throughout the agar, where benefits of dispersal might be lost. Surprisingly, we found dispersal to be equally advantageous under both phage conditions relative to when phages were absent. A general explanation is that dispersal decreased the spatial structuring of host population, reducing opportunities for parasite transmission, but other more idiosyncratic mechanisms may also have contributed. This study highlights the crucial role the parasites can play on the evolution of dispersal and, more specifically, that bacteriophages, which are ubiquitous, are likely to select for bacterial motility.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Aggressive periodontitis is a specific form of periodontal disease that is characterized by rapid attachment loss and bone destruction. Cytokine profiles are of considerable value when studying disease course during treatment. The aim of this trial was to investigate cytokine levels in the gingival crevicular fluid (GCF) of patients with aggressive periodontitis, after treatment with photodynamic therapy (PDT) or scaling and root planing (SRP), in a split-mouth design on -7, 0, +1, +7, +30, and +90 days. Methods: Ten patients were randomly treated with PDT using a laser source associated with a photosensitizer or SRP with hand instruments. GCF samples were collected, and the concentrations of tumor necrosis factor-alpha (TNF-alpha) and receptor activator of nuclear factor-kappa B ligand (RANKL) were determined by enzyme-linked immunosorbent assays. The data were analyzed using generalized estimating equations to test the associations among treatments, evaluated parameters, and experimental times (alpha = 0.05). Results: Non-surgical periodontal treatment with PDT or SRP led to statistically significant reductions in TNF-alpha level 30 days following treatment. There were similar levels of TNF-alpha and RANKL at the different time points in both groups, with no statistically significant differences. Conclusion: SRP and PDT had similar effects on crevicular TNF-alpha and RANKL levels in patients with aggressive periodontitis. J Periodontol 2009;80:98-105.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: The aim of this study was to evaluate the effect of three denture hygiene methods against different microbial biofilms formed on acrylic resin specimens. Materials and methods: The set (sterile stainless steel basket and specimens) was contaminated (37 degrees C for 48 hours) by a microbial inoculum with 106 colony-forming units (CFU)/ml (standard strains: Staphylococcus aureus, Streptococcus mutans, Escherichia coli, Candida albicans, Pseudomonas aeruginosa, and Enterococcus faecalis; field strains: S. mutans, C. albicans, C. glabrata, and C. tropicalis). After inoculation, specimens were cleansed by the following methods: (1) chemical: immersion in an alkaline peroxide solution (Bonyplus tablets) for 5 minutes; (2) mechanical: brushing with a dentifrice for removable prostheses (Dentu Creme) for 20 seconds; and (3) a combination of chemical and mechanical methods. Specimens were applied onto a Petri plate with appropriate culture medium for 10 minutes. Afterward, the specimens were removed and the plates incubated at 37 degrees C for 48 hours. Results: Chemical, mechanical, and combination methods showed no significant difference in the reduction of CFU for S. aureus, S. mutans (ATCC and field strain), and P. aeruginosa. Mechanical and combination methods were similar and more effective than the chemical method for E. faecalis, C. albicans (ATCC and field strain), and C. glabrata. The combination method was better than the chemical method for E. coli and C. tropicalis, and the mechanical method showed intermediate results. Conclusion: The three denture hygiene methods showed different effects depending on the type of microbial biofilms formed on acrylic base resin specimens.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A clinical Klebsiella pneumoniae isolate carrying the extended-spectrum beta-lactamase gene variants bla(SHV-40), bla(TEM-116) and bla(GES-7) was recovered. Cefoxitin and ceftazidime activity was most affected by the presence of these genes and an additional resistance to trimethoprim-sulphamethoxazole was observed. The bla(GES-7) gene was found to be inserted into a class 1 integron. These results show the emergence of novel bla(TEM) and bla(SHV) genes in Brazil. Moreover, the presence of class 1 integrons suggests a great potential for dissemination of bla(GES) genes into diverse nosocomial pathogens. Indeed, the bla(GES-7) gene was originally discovered in Enterobacter cloacae in Greece and, to our knowledge, has not been reported elsewhere.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ethnopharmacological importance: Many species of plants in the Brazilian cerrado (savanna) are widely used in ethnomedicine. However, the safety and effectiveness of medicinal plants used in communities with little or no access to manufactured drugs should be evaluated. Aim of the study: Evaluate the antimicrobial and cytotoxic activities of extracts from eight plant species, obtained using Brazilian cachaca as the extractor liquid. Materials and methods: The extracts were tested against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Candida albicans, Candida parapsilosis, promastigote forms of Leishmania amazonensis, and poliovirus. In addition, cytotoxic activity was assayed in Vero cells and in human erythrocytes. Results: The plant species Curatella americana, Sclerolobium aureum, and Plathymenia reticulata showed the best activity against yeasts, especially the crude extract of C. americana and its ethyl-acetate fraction. Kielmeyera lathrophyton showed a minimum inhibitory concentration of 250 mu g/ml against S. aureus, and was inactive against Gram-negative bacteria. The extract obtained from Annona coriacea showed the best activity against the promastigote forms of Leishmania amazonensis (IC(50) = 175 mu g/ml). Only C. americana showed potential for antipoliovirus activity. The concentrations of the crude extracts that showed toxicity to VERO cells had CC(50) between 31 and 470 mu g/ml, and the lyophilized Brazilian cachaca showed a CC(50) of 307 mu g/ml. None of the extracts showed toxicity against human erythrocytes. Conclusions: Among the plant species studied. C americana proved to be effective against microorganisms, especially as an antifungal. The results will help in the search for alternative drugs to be used in pharmacotherapy, and will contribute to establish safe and effective use of phytomedicines in the treatment of infectious diseases. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: To investigate the microbial etiology of suppurative chronic otitis media (SCOM) in patients with complete cleft lip and palate and isolated cleft palate and to determine the sensitivity of isolated microorganisms to antibiotics by drug diffusion from impregnated discs in agar and the minimum inhibitory concentration of each drug to these microorganisms by drug dilution in agar. Design/Patients: Effusion samples of SCOM obtained from 40 patients with cleft lip and palate registered at the Hospital for Rehabilitation of Craniofacial Anomalies, University of Sao Paulo, at Bauru, Brazil, were bacteriologically analyzed by cultures. The isolated bacteria were submitted to an in vitro susceptibility test to clinically used drugs. Results: Positive cultures were obtained in 100% of studied cases. Among the 57 strains observed, the most frequent were Pseudomonas aeruginosa (35%), Staphylococcus aureus (15.5%), Enterococcus faecalis (14%), and Proteus mirabilis (12%). The frequency of Gram-negative bacilli (enterobacteriaceae and nonfermentative bacilli) was 67%. Pseudomonas aeruginosa presented the highest sensitivity to ciprofloxacin, and enterobacteriaceae exhibited the highest sensitivity to gentamicin. The strains of S. aureus and E. faecalis presented the highest sensitivity to imipenem and sulfamethoxazole/trimethoprim, respectively. Conclusion: Patients with cleft lip and palate presenting with SCOM exhibited 100% positive cultures, with the highest frequency of Pseudomonas and enterobacteriaceae. With regard to the action of antibiotics, imipenem was effective against the four species of isolated microorganisms, followed by ciprofloxacin, which was effective against 75% of isolated species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microplusin, a Rhipicephalus (Boophilus) microplus antimicrobial peptide (AMP) is the first fully characterized member of a new family of cysteine-rich AMPs with histidine-rich regions at the N and C termini. In the tick, microplusin belongs to the arsenal of innate defense molecules active against bacteria and fungi. Here we describe the NMR solution structure of microplusin and demonstrate that the protein binds copper II and iron II. Structured as a single alpha-helical globular domain, microplusin consists of five alpha-helices: alpha 1 (residues Gly-9 to Arg-21), alpha 2 (residues Glu-27 to Asn-40), alpha 3 (residues Arg-44 to Thr-54), alpha 4 (residues Leu-57 to Tyr-64), and alpha 5 (residues Asn-67 to Cys-80). The N and C termini are disordered. This structure is unlike any other AMP structures described to date. We also used NMR spectroscopy to map the copper binding region on microplusin. Finally, using the Gram-positive bacteria Micrococcus luteus as a model, we studied of mode of action of microplusin. Microplusin has a bacteriostatic effect and does not permeabilize the bacterial membrane. Because microplusin binds metals, we tested whether this was related to its antimicrobial activity. We found that the bacteriostatic effect of microplusin was fully reversed by supplementation of culture media with copper II but not iron II. We also demonstrated that microplusin affects M. luteus respiration, a copper-dependent process. Thus, we conclude that the antibacterial effect of microplusin is due to its ability to bind and sequester copper II.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Free-living amoebae of the genus Acanthamoeba are widely distributed in soil and water collections, where trophozoites (vegetative, multiplicative stages) feed mainly by phagocytosis and thus control bacterial populations in the environment. Here, we examined the growth, encystment and survival of Acanthamoeba castellanii receiving different bacteria (Escherichia coli, Pseudomonas aeruginosa, Enterobacter cloacae, Bacillus subtilis, Bacillus megaterium, Micrococcus luteus, and Staphylococcus aureus) in nonnutrient saline. All bacteria assayed induced a dose-dependent proliferative response, in most cases maximized with a bacterial dose of 1 x 10(9) mL(-1); except for M. luteus, trophozoites grew better with viable than with heat-killed bacteria. In addition, Acanthamoeba growth was improved by adding bacteria on alternate days. Single-dose experiments indicated a temporal association between the growth of trophozoite and bacterial consumption, and higher consumption of M. luteus, E. coli and P. aeruginosa, bacterial species that allowed the highest trophozoite yields. Long-term Acanthamoeba-bacteria incubation revealed that encystment was significantly delayed by almost all the bacteria assayed (including S. aureus, which elicited a poor growth response) and that the presence of bacteria markedly increased cyst yield; final cyst recovery clearly depended on both the dose and the type of the bacterium given, being much higher with E. coli, M. luteus and P. aeruginosa.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Brazil is a country with continental proportions with high geographic and economic diversity. Despite its medical centers of excellence, antimicrobial resistance poses a major therapeutic challenge. Rates of methicillin-resistant Staphylococcus aureus are up to 60% and are related to an endemic Brazilian clone. Local resistance to vancomycin in Enterococci was first related to Enterococcus faecalis, which differs from European and American epidemiology. Also, local Klebsiella pneumoniae and Escherichia coli isolates producing extended-spectrum beta-lactamases have a much higher prevalence (40%-50% and 10%-18%, respectively). Carbapenem resistance among the enterobacteriaceae group is becoming a major problem, and K. pneumoniae carbapenemase isolates have been reported in different states. Among nonfermenters, carbapenem resistance is strongly related to SPM-1 (Pseudomonasaeruginosa) and OXA-23 (Acinetobacter baumannii complex) enzymes, and a colistin-only susceptible phenotype has also emerged in these isolates, which is worrisome. Local actions without loosing the global resistance perspective will demand multidisciplinary actions, new policies, and political engagement.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In most bacteria, the ferric uptake regulator (Fur) is a global regulator that controls iron homeostasis and other cellular processes, such as oxidative stress defense. In this work, we apply a combination of bioinformatics, in vitro and in vivo assays to identify the Caulobacter crescentus Fur regulon. A C. crescentus fur deletion mutant showed a slow growth phenotype, and was hypersensitive to H(2)O(2) and organic peroxide. Using a position weight matrix approach, several predicted Fur-binding sites were detected in the genome of C. crescentus, located in regulatory regions of genes not only involved in iron uptake and usage but also in other functions. Selected Fur-binding sites were validated using electrophoretic mobility shift assay and DNAse I footprinting analysis. Gene expression assays revealed that genes involved in iron uptake were repressed by iron-Fur and induced under conditions of iron limitation, whereas genes encoding iron-using proteins were activated by Fur under conditions of iron sufficiency. Furthermore, several genes that are regulated via small RNAs in other bacteria were found to be directly regulated by Fur in C. crescentus. In conclusion, Fur functions as an activator and as a repressor, integrating iron metabolism and oxidative stress response in C. crescentus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two new complexes of platinum(II) and silver(I) with acesulfame were synthesized. Acesulfame is in the anionic form acesulfamate (ace). The structures of both complexes were determined by X-ray crystallography. For K(2)[PtCl(2)(ace)(2)] the platinum atom is coordinated to two Cl(-) and two N-acesulfamate atoms forming a trans-square planar geometry. Each K(+) ion interacts with two oxygen atoms of the S(=O)(2) group of each acesulfamate. For the polymeric complex [Ag(ace)](n) the water molecule bridges between two crystallographic equivalent Agl atoms which are related each other by a twofold symmetry axis. Two Agl atoms, related to each other by a symmetry centre, make bond contact with two equivalent oxygen atoms. These bonds give rise to infinite chains along the unit cell diagonal in the ac plane. The in vitro cytotoxic analyses for the platinum complex using HeLa (human cervix cancer) cells show its low activity when compared to the vehicle-treated cells. The Ag(I) complex submitted to in vitro antimycobacterial tests, using the Microplate Alamar Blue (MABA) method, showed a good activity against Mycobacterium tuberculosis, responsible for tuberculosis, with a minimal inhibitory concentration (MIC) value of 11.6 mu M. The Ag(I) complex also presented a promising activity against Gram negative (Escherichia colt and Pseudomonas aeruginosa) and Gram positive (Enterococcus faecalis) microorganisms. The complex K(2)[PtCl(2)(ace)(2)] was also evaluated for antiviral properties against dengue virus type 2 (New Guinea C strain) in Vero cells and showed a good inhibition of dengue virus type 2 (New Guinea G strain) replication at 200 mu M, when compared to vehicle-treated cells. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hybrid films from poly (methylmethacrylate) (PMMA) and dioctadecyldimethylammonium bromide (DODAB), cetyltrimethylammonium bromide (CTAB), or tetrapropylammonium bromide (TPAB) were characterized by determination of wettability, ellipsometry, atomic force microscopy, active compounds diffusion to water, X-ray photoelectron spectroscopy (XPS) with determination of atomic composition on the films surface, and biocidal activity against Pseudomonas aeruginosa or Staphylococcus aureus. QAC mobility in the films increased from DODAB to CTAB to TPAB. Diffusion and optimal hydrophobic hydrophilic balance imparted the highest bioactivity to CTAB. DODAB sustained immobilization at the film surface killed bacteria upon contact. TPAB ability to diffuse was useless because of its unfavorable hydrophobic hydrophilic balance for bioactivity.