972 resultados para pseudo-random number generator


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cluster analysis for categorical data has been an active area of research. A well-known problem in this area is the determination of the number of clusters, which is unknown and must be inferred from the data. In order to estimate the number of clusters, one often resorts to information criteria, such as BIC (Bayesian information criterion), MML (minimum message length, proposed by Wallace and Boulton, 1968), and ICL (integrated classification likelihood). In this work, we adopt the approach developed by Figueiredo and Jain (2002) for clustering continuous data. They use an MML criterion to select the number of clusters and a variant of the EM algorithm to estimate the model parameters. This EM variant seamlessly integrates model estimation and selection in a single algorithm. For clustering categorical data, we assume a finite mixture of multinomial distributions and implement a new EM algorithm, following a previous version (Silvestre et al., 2008). Results obtained with synthetic datasets are encouraging. The main advantage of the proposed approach, when compared to the above referred criteria, is the speed of execution, which is especially relevant when dealing with large data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myocardial Perfusion Gated Single Photon Emission Tomography (Gated-SPET) imaging is used for the combined evaluation of myocardial perfusion and left ventricular (LV). The purpose of this study is to evaluate the influence of the total number of counts acquired from myocardium, in the calculation of myocardial functional parameters using routine software procedures. Methods: Gated-SPET studies were simulated using Monte Carlo GATE package and NURBS phantom. Simulated data were reconstructed and processed using the commercial software package Quantitative Gated-SPECT. The Bland-Altman and Mann-Whitney-Wilcoxon tests were used to analyze the influence of the number of total counts in the calculation of LV myocardium functional parameters. Results: In studies simulated with 3MBq in the myocardium there were significant differences in the functional parameters: Left ventricular ejection fraction (LVEF), end-systolic volume (ESV), Motility and Thickness; between studies acquired with 15s/projection and 30s/projection. Simulations with 4.2MBq show significant differences in LVEF, end-diastolic volume (EDV) and Thickness. Meanwhile in the simulations with 5.4MBq and 8.4MBq the differences were statistically significant for Motility and Thickness. Conclusion: The total number of counts per simulation doesn't significantly interfere with the determination of Gated-SPET functional parameters using the administered average activity of 450MBq to 5.4MBq in myocardium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mestrado em Radioterapia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of uncertainty propagation in composite laminate structures is studied. An approach based on the optimal design of composite structures to achieve a target reliability level is proposed. Using the Uniform Design Method (UDM), a set of design points is generated over a design domain centred at mean values of random variables, aimed at studying the space variability. The most critical Tsai number, the structural reliability index and the sensitivities are obtained for each UDM design point, using the maximum load obtained from optimal design search. Using the UDM design points as input/output patterns, an Artificial Neural Network (ANN) is developed based on supervised evolutionary learning. Finally, using the developed ANN a Monte Carlo simulation procedure is implemented and the variability of the structural response based on global sensitivity analysis (GSA) is studied. The GSA is based on the first order Sobol indices and relative sensitivities. An appropriate GSA algorithm aiming to obtain Sobol indices is proposed. The most important sources of uncertainty are identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: Estimate the frequency of online searches on the topic of smoking and analyze the quality of online resources available to smokers interested in giving up smoking. METHODS: Search engines were used to revise searches and online resources related to stopping smoking in Brazil in 2010. The number of searches was determined using analytical tools available on Google Ads; the number and type of sites were determined by replicating the search patterns of internet users. The sites were classified according to content (advertising, library of articles and other). The quality of the sites was analyzed using the Smoking Treatment Scale- Content (STS-C) and the Smoking Treatment Scale - Rating (STS-R). RESULTS: A total of 642,446 searches was carried out. Around a third of the 113 sites encountered were of the 'library' type, i.e. they only contained articles, followed by sites containing clinical advertising (18.6) and professional education (10.6). Thirteen of the sites offered advice on quitting directed at smokers. The majority of the sites did not contain evidence-based information, were not interactive and did not have the possibility of communicating with users after the first contact. Other limitations we came across were a lack of financial disclosure as well as no guarantee of privacy concerning information obtained and no distinction made between editorial content and advertisements. CONCLUSIONS: There is a disparity between the high demand for online support in giving up smoking and the scarcity of quality online resources for smokers. It is necessary to develop interactive, customized online resources based on evidence and random clinical testing in order to improve the support available to Brazilian smokers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been shown that in reality at least two general scenarios of data structuring are possible: (a) a self-similar (SS) scenario when the measured data form an SS structure and (b) a quasi-periodic (QP) scenario when the repeated (strongly correlated) data form random sequences that are almost periodic with respect to each other. In the second case it becomes possible to describe their behavior and express a part of their randomness quantitatively in terms of the deterministic amplitude–frequency response belonging to the generalized Prony spectrum. This possibility allows us to re-examine the conventional concept of measurements and opens a new way for the description of a wide set of different data. In particular, it concerns different complex systems when the ‘best-fit’ model pretending to be the description of the data measured is absent but the barest necessity of description of these data in terms of the reduced number of quantitative parameters exists. The possibilities of the proposed approach and detection algorithm of the QP processes were demonstrated on actual data: spectroscopic data recorded for pure water and acoustic data for a test hole. The suggested methodology allows revising the accepted classification of different incommensurable and self-affine spatial structures and finding accurate interpretation of the generalized Prony spectroscopy that includes the Fourier spectroscopy as a partial case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper analyses earthquake data in the perspective of dynamical systems and its Pseudo Phase Plane representation. The seismic data is collected from the Bulletin of the International Seismological Centre. The geological events are characterised by their magnitude and geographical location and described by means of time series of sequences of Dirac impulses. Fifty groups of data series are considered, according to the Flinn-Engdahl seismic regions of Earth. For each region, Pearson’s correlation coefficient is used to find the optimal time delay for reconstructing the Pseudo Phase Plane. The Pseudo Phase Plane plots are then analysed and characterised.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on the analysis of tidal breathing patterns measured during noninvasive forced oscillation lung function tests in six individual groups. The three adult groups were healthy, with prediagnosed chronic obstructive pulmonary disease, and with prediagnosed kyphoscoliosis, respectively. The three children groups were healthy, with prediagnosed asthma, and with prediagnosed cystic fibrosis, respectively. The analysis is applied to the pressure–volume curves and the pseudophaseplane loop by means of the box-counting method, which gives a measure of the area within each loop. The objective was to verify if there exists a link between the area of the loops, power-law patterns, and alterations in the respiratory structure with disease. We obtained statistically significant variations between the data sets corresponding to the six groups of patients, showing also the existence of power-law patterns. Our findings support the idea that the respiratory system changes with disease in terms of airway geometry and tissue parameters, leading, in turn, to variations in the fractal dimension of the respiratory tree and its dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sleep-states are emerging as a first-class design choice in energy minimization. A side effect of this is that the release behavior of the system is affected and subsequently the preemption relations between tasks. In a first step we have investigated how the behavior in terms of number of preemptions of tasks in the system is changed at runtime, using an existing procrastination approach, which utilizes sleepstates for energy savings purposes. Our solution resulted in substantial savings of preemptions and we expect from even higher yields for alternative energy saving algorithms. This work is intended to form the base of future research, which aims to bound the number of preemptions at analysis time and subsequently how this may be employed in the analysis to reduced the amount of system utilization, which is reserved to account for the preemption delay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes a finite element-based formulation for the statistical analysis of the response of stochastic structural composite systems whose material properties are described by random fields. A first-order technique is used to obtain the second-order statistics for the structural response considering means and variances of the displacement and stress fields of plate or shell composite structures. Propagation of uncertainties depends on sensitivities taken as measurement of variation effects. The adjoint variable method is used to obtain the sensitivity matrix. This method is appropriated for composite structures due to the large number of random input parameters. Dominant effects on the stochastic characteristics are studied analyzing the influence of different random parameters. In particular, a study of the anisotropy influence on uncertainties propagation of angle-ply composites is carried out based on the proposed approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compositional real-time scheduling clearly requires that ”normal” real-time scheduling challenges are addressed but challenges intrinsic to compositionality must be addressed as well, in particular: (i) how should interfaces be described? and (ii) how should numerical values be assigned to parameters constituting the interfaces? The real-time systems community has traditionally used narrow interfaces for describing a component (for example, a utilization/bandwidthlike metric and the distribution of this bandwidth in time). In this paper, we introduce the concept of competitive ratio of an interface and show that typical narrow interfaces cause poor performance for scheduling constrained-deadline sporadic tasks (competitive ratio is infinite). Therefore, we explore more expressive interfaces; in particular a class called medium-wide interfaces. For this class, we propose an interface type and show how the parameters of the interface should be selected. We also prove that this interface is 8-competitive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose an efficient algorithm to estimate the number of live computer nodes in a network. This algorithm is fully distributed, and has a time-complexity which is independent of the number of computer nodes. The algorithm is designed to take advantage of a medium access control (MAC) protocol which is prioritized; that is, if two or more messages on different nodes contend for the medium, then the node contending with the highest priority will win, and all nodes will know the priority of the winner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An approach for the analysis of uncertainty propagation in reliability-based design optimization of composite laminate structures is presented. Using the Uniform Design Method (UDM), a set of design points is generated over a domain centered on the mean reference values of the random variables. A methodology based on inverse optimal design of composite structures to achieve a specified reliability level is proposed, and the corresponding maximum load is outlined as a function of ply angle. Using the generated UDM design points as input/output patterns, an Artificial Neural Network (ANN) is developed based on an evolutionary learning process. Then, a Monte Carlo simulation using ANN development is performed to simulate the behavior of the critical Tsai number, structural reliability index, and their relative sensitivities as a function of the ply angle of laminates. The results are generated for uniformly distributed random variables on a domain centered on mean values. The statistical analysis of the results enables the study of the variability of the reliability index and its sensitivity relative to the ply angle. Numerical examples showing the utility of the approach for robust design of angle-ply laminates are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJETIVO: Estimar a confiabilidade teste-reteste dos itens do Resource Generator scale para avaliação de capital social no Estudo Longitudinal de Saúde do Adulto (ELSA-Brasil).MÉTODOS: A escala de capital social foi aplicada em subamostra de 281 participantes dos seis Centros de Investigação do ELSA, em duas oportunidades, com intervalo de sete a 14 dias. O instrumento é constituído por 31 itens que representam situações concretas para avaliar o acesso a diferentes tipos de recursos, além de avaliar a fonte dos recursos disponíveis (familiares, amigos ou conhecidos). A análise estatística foi realizada por meio de estatísticas kappa (k) e kappa ajustado pela prevalência (ka).RESULTADOS: Os recursos sociais investigados foram encontrados com grande frequência (acima de 50%). Em relação à presença ou ausência dos recursos, as estimativas de confiabilidade ajustadas pela prevalência (ka) variaram de 0,54 a 0,97. No que se refere à fonte de recurso, essas estimativas variaram de ka = 0,45 (alguém que tenha bons contatos com a mídia) a ka = 0,86 (alguém que se formou no Ensino Médio).CONCLUSÕES: A escala apresentou níveis adequados de confiabilidade, que variaram de acordo com o tipo de recurso.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This Thesis describes the application of automatic learning methods for a) the classification of organic and metabolic reactions, and b) the mapping of Potential Energy Surfaces(PES). The classification of reactions was approached with two distinct methodologies: a representation of chemical reactions based on NMR data, and a representation of chemical reactions from the reaction equation based on the physico-chemical and topological features of chemical bonds. NMR-based classification of photochemical and enzymatic reactions. Photochemical and metabolic reactions were classified by Kohonen Self-Organizing Maps (Kohonen SOMs) and Random Forests (RFs) taking as input the difference between the 1H NMR spectra of the products and the reactants. The development of such a representation can be applied in automatic analysis of changes in the 1H NMR spectrum of a mixture and their interpretation in terms of the chemical reactions taking place. Examples of possible applications are the monitoring of reaction processes, evaluation of the stability of chemicals, or even the interpretation of metabonomic data. A Kohonen SOM trained with a data set of metabolic reactions catalysed by transferases was able to correctly classify 75% of an independent test set in terms of the EC number subclass. Random Forests improved the correct predictions to 79%. With photochemical reactions classified into 7 groups, an independent test set was classified with 86-93% accuracy. The data set of photochemical reactions was also used to simulate mixtures with two reactions occurring simultaneously. Kohonen SOMs and Feed-Forward Neural Networks (FFNNs) were trained to classify the reactions occurring in a mixture based on the 1H NMR spectra of the products and reactants. Kohonen SOMs allowed the correct assignment of 53-63% of the mixtures (in a test set). Counter-Propagation Neural Networks (CPNNs) gave origin to similar results. The use of supervised learning techniques allowed an improvement in the results. They were improved to 77% of correct assignments when an ensemble of ten FFNNs were used and to 80% when Random Forests were used. This study was performed with NMR data simulated from the molecular structure by the SPINUS program. In the design of one test set, simulated data was combined with experimental data. The results support the proposal of linking databases of chemical reactions to experimental or simulated NMR data for automatic classification of reactions and mixtures of reactions. Genome-scale classification of enzymatic reactions from their reaction equation. The MOLMAP descriptor relies on a Kohonen SOM that defines types of bonds on the basis of their physico-chemical and topological properties. The MOLMAP descriptor of a molecule represents the types of bonds available in that molecule. The MOLMAP descriptor of a reaction is defined as the difference between the MOLMAPs of the products and the reactants, and numerically encodes the pattern of bonds that are broken, changed, and made during a chemical reaction. The automatic perception of chemical similarities between metabolic reactions is required for a variety of applications ranging from the computer validation of classification systems, genome-scale reconstruction (or comparison) of metabolic pathways, to the classification of enzymatic mechanisms. Catalytic functions of proteins are generally described by the EC numbers that are simultaneously employed as identifiers of reactions, enzymes, and enzyme genes, thus linking metabolic and genomic information. Different methods should be available to automatically compare metabolic reactions and for the automatic assignment of EC numbers to reactions still not officially classified. In this study, the genome-scale data set of enzymatic reactions available in the KEGG database was encoded by the MOLMAP descriptors, and was submitted to Kohonen SOMs to compare the resulting map with the official EC number classification, to explore the possibility of predicting EC numbers from the reaction equation, and to assess the internal consistency of the EC classification at the class level. A general agreement with the EC classification was observed, i.e. a relationship between the similarity of MOLMAPs and the similarity of EC numbers. At the same time, MOLMAPs were able to discriminate between EC sub-subclasses. EC numbers could be assigned at the class, subclass, and sub-subclass levels with accuracies up to 92%, 80%, and 70% for independent test sets. The correspondence between chemical similarity of metabolic reactions and their MOLMAP descriptors was applied to the identification of a number of reactions mapped into the same neuron but belonging to different EC classes, which demonstrated the ability of the MOLMAP/SOM approach to verify the internal consistency of classifications in databases of metabolic reactions. RFs were also used to assign the four levels of the EC hierarchy from the reaction equation. EC numbers were correctly assigned in 95%, 90%, 85% and 86% of the cases (for independent test sets) at the class, subclass, sub-subclass and full EC number level,respectively. Experiments for the classification of reactions from the main reactants and products were performed with RFs - EC numbers were assigned at the class, subclass and sub-subclass level with accuracies of 78%, 74% and 63%, respectively. In the course of the experiments with metabolic reactions we suggested that the MOLMAP / SOM concept could be extended to the representation of other levels of metabolic information such as metabolic pathways. Following the MOLMAP idea, the pattern of neurons activated by the reactions of a metabolic pathway is a representation of the reactions involved in that pathway - a descriptor of the metabolic pathway. This reasoning enabled the comparison of different pathways, the automatic classification of pathways, and a classification of organisms based on their biochemical machinery. The three levels of classification (from bonds to metabolic pathways) allowed to map and perceive chemical similarities between metabolic pathways even for pathways of different types of metabolism and pathways that do not share similarities in terms of EC numbers. Mapping of PES by neural networks (NNs). In a first series of experiments, ensembles of Feed-Forward NNs (EnsFFNNs) and Associative Neural Networks (ASNNs) were trained to reproduce PES represented by the Lennard-Jones (LJ) analytical potential function. The accuracy of the method was assessed by comparing the results of molecular dynamics simulations (thermal, structural, and dynamic properties) obtained from the NNs-PES and from the LJ function. The results indicated that for LJ-type potentials, NNs can be trained to generate accurate PES to be used in molecular simulations. EnsFFNNs and ASNNs gave better results than single FFNNs. A remarkable ability of the NNs models to interpolate between distant curves and accurately reproduce potentials to be used in molecular simulations is shown. The purpose of the first study was to systematically analyse the accuracy of different NNs. Our main motivation, however, is reflected in the next study: the mapping of multidimensional PES by NNs to simulate, by Molecular Dynamics or Monte Carlo, the adsorption and self-assembly of solvated organic molecules on noble-metal electrodes. Indeed, for such complex and heterogeneous systems the development of suitable analytical functions that fit quantum mechanical interaction energies is a non-trivial or even impossible task. The data consisted of energy values, from Density Functional Theory (DFT) calculations, at different distances, for several molecular orientations and three electrode adsorption sites. The results indicate that NNs require a data set large enough to cover well the diversity of possible interaction sites, distances, and orientations. NNs trained with such data sets can perform equally well or even better than analytical functions. Therefore, they can be used in molecular simulations, particularly for the ethanol/Au (111) interface which is the case studied in the present Thesis. Once properly trained, the networks are able to produce, as output, any required number of energy points for accurate interpolations.