550 resultados para propionate catabolism


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: Mutations in the LDLR gene are the major cause of familial hypercholesterolaemia (FH), which results in defective catabolism of LDL leading to premature coronary heart disease. Presently, more than 1700 different mutations in the LDLR gene have been described as causing FH but the majority of them remain without functional characterization. In the Portuguese Familial Hypercholesterolemia Study (PFHS), 123 LDLR alterations were found in 243 index patients and their relatives up to date. Until now, 70 of these alterations already have a final classification of pathogenic and 15 have been proved by in vitro studies to be non-pathogenic. The aim of the present work is to functionally characterize 16 LDLR missense alterations found in Portuguese FH patients and worldwide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stratum corneum (SC) desorption experiments have yielded higher calculated steady-state fluxes than those obtained by epidermal penetration studies. A possible explanation of this result is a variable diffusion or partition coefficient across the SC. We therefore developed the diffusion model for percutaneous penetration and desorption to study the effects of either a variable diffusion coefficient or variable partition coefficient in the SC over the diffusion path length. Steady-state flux, lag time, and mean desorption time were obtained from Laplace domain solutions. Numerical inversion of the Laplace domain solutions was used for simulations of solute concentration-distance and amount penetrated (desorbed)-time profiles. Diffusion and partition coefficients heterogeneity were examined using six different models. The effect of heterogeneity on predicted flux from desorption studies was compared with that obtained in permeation studies. Partition coefficient heterogeneity had a more profound effect on predicted fluxes than diffusion coefficient heterogeneity. Concentration-distance profiles show even larger dependence on heterogeneity, which is consistent with experimental tape-stripping data reported for clobetasol propionate and other solutes. The clobetasol propionate tape-stripping data were most consistent with the partition coefficient decreasing exponentially for half the SC and then becoming a constant for the remaining SC. (C) 2004 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Primary objective: The study aimed to examine the changes in water distribution in the soft tissue during systemic steroid activity. Research design: A three-way cross-over, randomized, placebo-controlled, double-blind trial was used, including 4 weeks of fluticasone propionate pMDI 200 mug b.i.d. delivered via Babyhaler(R), budesonide pressurized metered dose inhaler (pMDI) 200 mug b.i.d. delivered via Nebuchamber(R) and placebo. Spacers were primed before use. In total, 40 children aged 1-3 years, with mild intermittent asthma were included. Twenty-five of the children completed all three treatments. At the end of each treatment period body impedance and skin ultrasonography were measured. Methods and procedures: We measured changes in water content of the soft tissues by two methods. Skin ultrasonography was used to detect small changes in dermal water content, and bioelectrical impedance was used to assess body water content and distribution. Main outcomes and results: We found an increase in skin density of the shin from fluticasone as measured by ultrasonography (p = 0.01). There was a tendency for a consistent elevation of impedance parameters from active treatments compared to placebo although overall this effect was not statistically significant (0.1< p <0.2). However, sub-analyses indicated a significant effect on whole-body and leg impedance from budesonide treatment (p <0.05). Conclusion: Decreased growth during inhaled steroid treatment seems to partly reflect generalized changes in body water.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effectiveness of enhanced biological phosphorus removal (ESPR) systems is directly affected by the competition of polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs). This study investigated the short-term effects of carbon source on PAO and GAO performance. The tests were designed to clearly determine the impact of volatile fatty acid (VFA) composition on the performance of two types of biomass, one enriched for PAOs and the other for GAOs. The two populations were enriched in separate reactors using identical operating conditions and very similar influent compositions with acetate as the sole carbon source. The only difference was that a very tow level of phosphorus was present in the influent to the GAO reactor. The abundance of PAOs and GAOs was quantified using fluorescence in-situ hybridisation. The results clearly show that there are some very distinctive differences between PAOs and GAOs in their ability to utilise different carbon substrates. While both are able to take up acetate rapidly and completely, the GAOs are far slower at consuming propionate than the PAOs during short-term substrate changes. This provides a potentially highly valuable avenue to influence the competition between PAOs and GAOs. Other VFAs studied seem to be less usable in the short term by both PAOs and GAOs; as indicated by their much lower uptake rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is an urgent need to treat restenosis, a major complication of the treatment of arteries blocked by atherosclerotic plaque, using local delivery techniques. We observed that cross-linked fibrin (XLF) is deposited at the site of surgical injury of arteries. An antibody to XLF, conjugated to anti-restenotic agents, should deliver the drugs directly and only to the site of injury. An anti-XLF antibody (H93.7C.1D2/48; 1D2) was conjugated to heparin (using N-succinimidyl 3-(2-pyridyldithio)-propionate), low molecular weight heparin (LMWH) (adipic acid dihydrazide) and rapamycin (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide), and the conjugates purified and tested for activity before use in vivo. Rabbits had their right carotid arteries de-endothelialised and then given a bolus of 1D2-heparin, 1D2-LMWH or 1D2-rapamycin conjugate or controls of saline, heparin, LMWH, rapamycin or 1D2 (+/-heparin bolus) and sacrificed after 2 or 4 weeks (12 groups, n=6/group). Rabbits given any of the conjugates had minimal neointimal development in injured arteries, with up to 59% fewer neointimal cells than those given control drugs. Rabbits given 1D2-heparin or 1D2-LMWH had an increased or insignificant reduction in luminal area, with positive remodelling, while the medial and total arterial areas of rabbits given 1D2-rapamycin were not affected by injury. Arteries exposed to 1D2-heparin or 1D2-rapamycin had more endothelial cells than rabbits given control drugs. Thus, XLF-antibodies can site-deliver anti-restenotic agents to injured areas of the artery wall, where the conjugates can influence remodelling, re-endothelialisation and neointimal cell density, with reduced neointimal formation. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The staggerer mice carry a deletion in the RORalpha gene and have a prolonged humoral response, overproduce inflammatory cytokines, and are immunodeficient. Furthermore, the staggerer mice display lowered plasma apoA-I/-II, decreased plasma high density lipoprotein cholesterol and triglycerides, and develop hypo-alpha-lipoproteinemia and atherosclerosis. However, relatively little is known about RORalpha in the context of target tissues, target genes, and lipid homeostasis. For example, RORalpha is abundantly expressed in skeletal muscle, a major mass peripheral tissue that accounts for similar to40% of total body weight and 50% of energy expenditure. This lean tissue is a primary site of glucose disposal and fatty acid oxidation. Consequently, muscle has a significant role in insulin sensitivity, obesity, and the blood-lipid profile. In particular, the role of RORalpha in skeletal muscle metabolism has not been investigated, and the contribution of skeletal muscle to the ROR-/- phenotype has not been resolved. We utilize ectopic dominant negative RORalpha expression in skeletal muscle cells to understand the regulatory role of RORs in this major mass peripheral tissue. Exogenous dominant negative RORalpha expression in skeletal muscle cells represses the endogenous levels of RORalpha and -gamma mRNAs and ROR-dependent gene expression. Moreover, we observed attenuated expression of many genes involved in lipid homeostasis. Furthermore, we show that the muscle carnitine palmitoyltransferase-1 and caveolin-3 promoters are directly regulated by ROR and coactivated by p300 and PGC-1. This study implicates RORs in the control of lipid homeostasis in skeletal muscle. In conclusion, we speculate that ROR agonists would increase fatty acid catabolism in muscle and suggest selective activators of ROR may have therapeutic utility in the treatment of obesity and atherosclerosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic fatigue syndrome (CFS) is characterized by idiopathic fatigue of greater than 6 months' duration with postexertional exacerbation and many other symptoms. A trend toward relative hypocortisolism is described in CFS. Twin and family studies indicate a substantial genetic etiologic component to CFS. Recently, severe corticosteroid-binding globulin (CBG) gene mutations have been associated with CFS in isolated kindreds. Human leukocyte elastase, an enzyme important in CBG catabolism at inflammatory sites, is reported to be elevated in CFS. We hypothesized that CBG gene polymorphisms may act as a genetic risk factor for CFS. A total of 248 patients with CFS defined by Centers for Disease Control criteria, and 248 controls were recruited. Sequencing and restriction enzyme testing of the CBG gene coding region allowed detection of severe CBG gene mutations and a common exon 3 polymorphism (c.825G --> T, Ala-Ser(224)). Plasma CBG levels were measured in 125 CFS patients and 198 controls by radioimmunoassay. Total and free (calculated and measured) cortisol levels were ascertained in single samples between 8-10 a.m. The age of onset (mid 30s) and gender ratio (2.2:1, female:male) of the patients were similar to those reported in U.S. epidemiologic studies. A trend toward a preponderance of serine(224) homozygosity among the CFS patients was noted, compared with controls (chi(2) = 5.31, P = 0.07). Immunoreactive-CBG (IR-CBG) levels were higher in Serine/Alanine (Ser/Ala) than Ala/Ala subjects and higher again in Ser/Ser subjects, this effect was strongest in controls; Ser/Ser: 46.1 +/- 1.8 (n = 31, P = 0.03) vs. Ser/Ala: 42.4 +/- 1.0 (n = 56, P = 0.05) vs. Ala/Ala: 40.8 +/- 1.7 mug/mL (n = 21). Despite higher CBG levels, there was a nonsignificant trend toward lower total and free plasma cortisol in serine allele positive patients, total cortisol: Ser/Ser: 13.3 +/- 1.4 (n = 34) vs. Ser/Ala: 14.0 +/- 0.7 (n = 66) vs. Ala/Ala: 15.4 +/- 1.0 (n = 23). Homozygosity for the serine allele of the CBG gene may predispose to CFS, perhaps due to an effect on hypothalamic-pituitary-adrenal axis function related to altered CBG-cortisol transport function or immune-cortisol interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Skeletal muscle is a major mass peripheral tissue that accounts for similar to 40% of the total body mass and a major player in energy balance. It accounts for > 30% of energy expenditure, is the primary tissue of insulin stimulated glucose uptake, disposal, and storage. Furthermore, it influences metabolism via modulation of circulating and stored lipid (and cholesterol) flux. Lipid catabolism supplies up to 70% of the energy requirements for resting muscle. However, initial aerobic exercise utilizes stored muscle glycogen but as exercise continues, glucose and stored muscle triglycerides become important energy substrates. Endurance exercise increasingly depends on fatty acid oxidation (and lipid mobilization from other tissues). This underscores the importance of lipid and glucose utilization as an energy source in muscle. Consequently skeletal muscle has a significant role in insulin sensitivity, the blood lipid profile, and obesity. Moreover, caloric excess, obesity and physical inactivity lead to skeletal muscle insulin resistance, a risk factor for the development of type II diabetes. In this context skeletal muscle is an important therapeutic target in the battle against cardiovascular disease, the worlds most serious public health threat. Major risk factors for cardiovascular disease include dyslipidemia, hypertension, obesity, sedentary lifestyle, and diabetes. These risk factors are directly influenced by diet, metabolism and physical activity. Metabolism is largely regulated by nuclear hormone receptors which function as hormone regulated transcription factors that bind DNA and mediate the pathophysiological regulation of gene expression. Metabolism and activity, which directly influence cardiovascular disease risk factors, are primarily driven by skeletal muscle. Recently, many nuclear receptors expressed in skeletal muscle have been shown to improve glucose tolerance, insulin resistance, and dyslipidernia. Skeletal muscle and nuclear receptors are rapidly emerging as critical targets in the battle against cardiovascular disease risk factors. Understanding the function of nuclear receptors in skeletal muscle has enormous pharmacological utility for the treatment of cardiovascular disease. This review focuses on the molecular regulation of metabolism by nuclear receptors in skeletal muscle in the context of dyslipidemia and cardiovascular disease. (c) 2005 Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sulfite-oxidizing molybdoenzymes convert the highly reactive and therefore toxic sulfite to sulfate and have been identified in insects, animals, plants, and bacteria. Although the well studied enzymes from higher animals serve to detoxify sulfite that arises from the catabolism of sulfur-containing amino acids, the bacterial enzymes have a central role in converting sulfite formed during dissimilatory oxidation of reduced sulfur compounds. Here we describe the structure of the Starkeya novella sulfite dehydrogenase, a heterodimeric complex of the catalytic molybdopterin subunit and a c-type cytochrome subunit, that reveals the molecular mechanism of intramolecular electron transfer in sulfite-oxidizing enzymes. The close approach of the two redox centers in the protein complex (Mo-Fe distance 16.6 angstrom) allows for rapid electron transfer via tunnelling or aided by the protein environment. The high resolution structure of the complex has allowed the identification of potential through-bond pathways for electron transfer including a direct link via Arg-55A and/or an aromatic-mediated pathway. A potential site of electron transfer to an external acceptor cytochrome c was also identified on the SorB subunit on the opposite side to the interaction with the catalytic SorA subunit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effects of monensin (Mon) on performance of Holstein-Friesian cows fed tropical grasses and cane molasses (M) or cereal grain were examined in three experiments. In experiment I (incomplete 4 x 4 Latin square), three rumen-fistulated cows [188 I I days in milk (DIM)] were fed mixed diets based on rhodes grass (Chloris gayana cv. Callide) bay where M was substituted for wheat grain (W) at rates of 0 (MO), 125 (M 125) or 250 (M250) g/kg dry matter (DM). A fourth diet contained M250 plus 0.02 g Mon/kg DM (M250 + Mon). Substituting M for W tended (P < 0.10) to decrease the ratio of rumen molar proportions of acetate+butyrate (Bu):propionate (Pr) (4.3 versus 3.8 and 4.0 for M0, M125 and M250, respectively). There were no treatment effects (P> 0.10) on intake, organic matter digestibility, milk production or liveweight (LW) change. In experiment 2, 48 cows (173 &PLUSMN; 28.3 DIM) grazing kikuyu (Pennisetum clandestinum cv. common) pastures and supplemented with maize silage and a grain-based concentrate were offered either M (2.6 kg DM/(cow day)) or barley grain (B) (2.7 kg DM/(cow day)). Within each supplement type, half were fed 0 or 320 mg of Mon/(cow day). There were Mon x supplement interactions (Mon x S; P < 0.05) on the rumen molar proportion of Pr and Bu at 15:00 h, with B + Mon having the highest value for Pr (0.259 mmol/mmol) and lowest value for Bu (0.121 mmol/mmol). A Mon x S effect (P < 0.05) on milk fat content was noted with Mon causing a lower value regardless of energy source (31 and 36 g/l versus 40 and 38 g/l for B + Mon, M + Mon, B - Mon and M - Mon, respectively). As a main effect, M as opposed to B, reduced yields of milk (P < 0.05; 16.21/(cow day) versus 18.01/(cow day)) and protein (P < 0.05; 479 g/(cow day) versus 538 g/(cow day)). Monensin reduced milk fat yield (P < 0.05; 669 g/(cow day) versus 562 g/(cow day)), raised milk protein concentration (P < 0.05; 31 g/l versus 29 g/l) and caused LW gain rather than loss (P < 0.05; +0.06 kg/(cow day) versus -0.30 kg/(cow day)). No treatment effects on pasture intake were noted. In experiment 3, 48 cows (91 &PLUSMN; 16.1 DIM) grazing kikuyu pasture and supplemented with grain-based concentrate, sugar cane silage and 2.7 kg DM(cow day) of M were supplemented with either 0 or 320 mg Mon/(cow day). Monensin reduced (P < 0.05) milk fat content (33 g/l versus 30 g/l) and tended (P < 0.10) to reduce milk protein content (29 g/l versus 28 g/l). No effects of Mon on other milk production parameters, LW change or pasture intake were noted. Feeding monensin to mid-lactation Holstein-Friesian cows offered diets based on tropical grasses, and cane molasses or grain, improves rumen fermentation efficiency, thereby improving energy efficiency resulting in higher LW gain. Monensin had no effect on milk yield, but reduced milk fat concentration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Saturated fat plays a role in common debilitating diseases such as obesity, type 2 diabetes, and coronary heart disease. It is also clear that certain fatty acids act as regulators of metabolism via both direct and indirect signalling of target tissues. As the molecular mechanisms of saturated fatty acid signalling in the liver are poorly defined, hepatic gene expression analysis was undertaken in a human hepatocyte cell line after incubation with palmitate. Profiling of mRNA expression using cDNA microarray analysis revealed that 162 of approximately 18,000 genes tested were differentially expressed after incubation with palmitate for 48 h. Altered transcription profiles were observed in a wide variety of genes, including genes involved in lipid and cholesterol transport, cholesterol catabolism, cell growth and proliferation, cell signalling, P-oxidation, and oxidative stress response. While palinitate signalling has been examined in pancreatic beta-cells, this is the first report showing that palmitate regulates expression of numerous genes via direct molecular signalling mechanisms in liver cells. (C) 2005 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Asthma guidelines recommend increasing or doubling inhaled corticosteroid (ICS) dose to treat mild and moderate exacerbations of asthma in adults. Aim: To: (i) compare the effectiveness of doubling existing daily ICS dose (fluticasone) with maintaining usual ICS dose and usual daily ICS dose accompanied by oral steroids (OS) (dexamethasone) during mild and moderately severe exacerbations of asthma in adults; (ii) examine determinants of success and failure; and (iii) compare side-effect profiles. Methods: A randomized, double-blind, placebo-controlled (double-dummy), triple crossover trial. Participants acted as their own control. Outcome measures included treatment success/failure, peak expiratory flow (PEF) after 7 days therapy or at treatment failure, and side-effects. Results: From 22 participants (nine males and 13 females), 18 pairs of data were available for maintaining usual ICS versus doubling ICS and doubling ICS versus OS, and 19 for maintaining usual ICS versus OS. Median (fifth-95th percentile) age was 46.5 (32-64) years and forced expiratory volume in one second (FEV1) 73% (29-97%) predicted. The outcome after doubling ICS was not superior to maintaining usual ICS, with 11 (61%) failures in both arms (P = 0.66). OS, with only 5 (26%) failures, was superior to maintaining usual ICS with 12 (63%) failures (P = 0.04), and to doubling ICS with 5 (28%) versus 11 (61%) failures (P = 0.07). Median PEF (as percentage of run-in best) at end-points were 90.5% (57.1-177.1) for OS, 78.3% (39.5-103.1) for maintaining usual ICS and 77.9 (27.7-110.3) for doubling ICS. Neither gender nor PEF at exacerbation were predictive of failure. Although doubling ICS was not an effective therapy overall, ICS dose at exacerbation were predictive of success in the doubling ICS arm (P = 0.04). Treatment failures when doubling daily ICS dose were more common if achieved fluticasone dose was less than 2000 mu g (three of 11, 73%) compared to 2000 mu g or greater (eight of eight, 37.5%). Increasing age and the presence of an upper respiratory tract infection (URTI) were predictive of failure with OS. Side-effects were more commonly reported with OS (52.6%) than doubling ICS (42.1%) or maintaining usual ICS (19.1%) with the most common being mood changes (36.8%), sleep disturbance (31.6%) and changes in appetite (26.3%). Conclusions: Doubling daily ICS dose per se is not effective for the treatment of mild to moderately severe exacerbations of asthma in adults. Success may depend on achieved ICS dose. Oral steroids are effective, but side-effects are common. A review of current guidelines may be warranted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In enhanced biological phosphorus removal (EBPR) processes, glycogen-accumulating organisms (GAOs) may compete with polyphosphate-accumulating organisms (PAOs) for the often-limited carbon substrates, potentially resulting in disturbances to phosphorus removal. A detailed investigation of the effect of pH on the competition between PAOs and GAOs is reported in this study. The results show that a high external pH (similar to 8) provided PAOs with an advantage over GAOs in EBPR systems. The phosphorus removal performance improved due to a population shift favouring PAOs over GAOs, which was shown through both chemical and microbiological methods. Two lab-scale reactors fed with propionate as the carbon source were subjected to an increase in pH from 7 to 8. The phosphorus removal and PAO population (as measured by quantitative fluorescence in situ hybridisation analysis of Candidatus Accumulibacter phosphatis) increased in each system, where the PAOs appeared to out-compete a group of Alphaproteobacteria GAOs. A considerable improvement in the P removal was also observed in an acetate fed reactor, where the GAO population (primarily Candidatus Competibacter phosphatis) decreased substantially after a similar increase in the pH. The results from this study suggest that pH could be used as a control parameter to reduce the undesirable proliferation of GAOs and improve phosphorus removal in EBPR systems. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly-beta-hydroxyalkanoate (PHA) is a polymer commonly used in carbon and energy storage for many different bacterial cells. Polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs), store PHA anaerobically through metabolism of carbon substrates such as acetate and propionate. Although poly-beta-hydroxybutyrate (PHB)and poly-beta-hydroxyvalerate (PHV) are commonly quantified using a previously developed gas chromatography (GC) method, poly-beta-hydroxy-2-methyl valerate (PH2MV) is seldom quantified despite the fact that it has been shown to be a key PHA fraction produced when PAOs or GAOs metabolise propionate. This paper presents two GC-based methods modified for extraction and quantification of PHB, PHV and PH2MV from enhanced biological phosphorus removal (EBPR) systems. For the extraction Of PHB and PHV from acetate fed PAO and GAO cultures, a 3% sulfuric acid concentration and a 2-20 h digestion time is recommended, while a 10% sulfuric acid solution digested for 20 h is recommended for PHV and PH2MV analysis from propionate fed EBPR systems. (c) 2005 Elsevier B.V. All rights reserved.