855 resultados para primary-backup model
Resumo:
OBJECTIVES: To evaluate the implementation of the National Health Service (NHS) Health Check programme in one area of England from the perspective of general practitioners (GPs). DESIGN: A qualitative exploratory study was conducted with GPs and other healthcare professionals involved in delivering the NHS Health Check and with patients. This paper reports the experience of GPs and focuses on the management of the Heath Check programme in primary care. SETTING: Primary care surgeries in the Heart of Birmingham region (now under the auspices of the Birmingham Cross City Clinical Commissioning Group) were invited to take part in the larger scale evaluation. This study focuses on a subset of those surgeries whose GPs were willing to participate. PARTICIPANTS: 9 GPs from different practices volunteered. GPs served an ethnically diverse region with areas of socioeconomic deprivation. Ethnicities of participant GPs included South Asian, South Asian British, white, black British and Chinese. METHODS: Individual semistructured interviews were conducted with GPs face to face or via telephone. Thematic analysis was used to analyse verbatim transcripts. RESULTS: Themes were generated which represent GPs' experiences of managing the NHS Health Check: primary care as a commercial enterprise; 'buy in' to concordance in preventive healthcare; following protocol and support provision. These themes represent the key issues raised by GPs. They reveal variability in the implementation of NHS Health Checks. GPs also need support in allocating resources to the Health Check including training on how to conduct checks in a concordant (or collaborative) way. CONCLUSIONS: The variability observed in this small-scale evaluation corroborates existing findings suggesting a need for more standardisation. Further large-scale research is needed to determine how that could be achieved. Work needs to be done to further develop a concordant approach to lifestyle advice which involves tailored individual goal setting rather than a paternalistic advice-giving model.
Resumo:
It is estimated that 69-75 million people worldwide will suffer a traumatic brain injury (TBI) or stroke each year. Brain oedema caused by TBI or following a stroke, together with other disorders of the brain cost Europe €770 billion in 2014. Aquaporins (AQP) are transmembrane water channels involved in many physiologies and are responsible for the maintenance of water homeostasis. They react rapidly to changes in osmolarity by transporting water through their highly selective central pore to maintain tonicity and aid in cell volume regulation. We have previously shown that recombinant AQP1-GFP trafficking occurs in a proteinkinase C-microtubule dependant manner in HEK-293 cells in response to hypotonicity. This trafficking mechanism is also reliant on the presence of calcium and its messenger-binding protein calmodulin and results in increased cell surface expression of AQP1 in a time-scale of ~30 seconds. There is currently very little research into the trafficking mechanisms of endogenous AQPs in primary cells. AQP4 is the most abundantly expressed AQP within the brain, it is localised to the astrocytic end-feet, in contact with the blood vessels at the blood-brain-barrier. In situations where the exquisitely-tuned osmotic balance is disturbed, high water permeability can become detrimental. AQP4-mediated water influx causes rapid brain swelling, resulting in death or long term brain damage. Previous research has shown that AQP4 knock-out mice were protected from the formation of cytotoxic brain oedema in a stroke model, highlighting AQP4 as a key drug target for this pathology. As there are currently no treatments available to restrict the flow of water through AQP4 as all known inhibitors are either cytotoxic or non-specific, controlling the mechanisms involved in the regulation of AQP4 in the brain could provide a therapeutic solution to such diseases. Using cell surface biontinylation of endogenous AQP4 in primary rat astrocytes followed by neutraavidin based ELISA we have shown that AQP4 cell surface localisation increases by 2.7 fold after 5 minutes hypotonic treatment at around 85 mOsm/kg H2O. We have also shown that this rapid relocalisation of AQP4 is regulated by PKA, calmodulin, extra-cellular calcium and actin. In summary we have shown that rapid translocation of endogenous AQP4 occurs in primary rat astrocytes in response to hypotonic stimuli; this mechanism is PKA, calcium, actin and calmodulin dependant. AQP4 has the potential to provide a treatment for the development of brain oedema.
Resumo:
The paper studies a generalisation of the dynamic Leontief input-output model. The standard dynamic Leontief model will be extended with the balance equation of renewable resources. The renewable stocks will increase regenerating and decrease exploiting primary natural resources. In this study the controllability of this extended model is examined by taking the consumption as the control parameter. Assuming balanced growth for both consumption and production, we investigate the exhaustion of renewable resources in dependence on the balanced growth rate and on the rate of natural regeneration. In doing so, classic results from control theory and on eigenvalue problems in linear algebra are applied.
Resumo:
The paper studies a generalisation of the dynamic Leontief input-output model. The standard dynamic Leontief model will be extended with the balance equation of renewable resources. The renewable stocks will increase regenerating and decrease exploiting primary natural resources. In this study the controllability of this extended model is examined by taking the consumption as the control parameter. Assuming balanced growth for both consumption and production, we investigate the exhaustion of renewable resources in dependence on the balanced growth rate and on the rate of natural regeneration. In doing so, classic results from control theory and on eigenvalue problems in linear algebra are applied.
Resumo:
The purpose of this study was to document and critically analyze the lived experience of selected nursing staff developers in the process of moving toward a new model for hospital nursing education. Eleven respondents were drawn from a nation-wide population of about two hundred individuals involved in nursing staff development. These subjects were responsible for the implementation of the Performance Based Development System (PBDS) in their institutions.^ A purposive, criterion-based sampling technique was used with respondents being selected according to size of hospital, primary responsibility for orchestration of the change, influence over budgetary factors and managerial responsibility for PBDS. Data were gathered by the researcher through both in-person and telephone interviews. A semi-structured interview guide, designed by the researcher was used, and respondents were encouraged to amplify on their recollections as desired. Audiotapes were transcribed and resulting computer files were analyzed using the program "Martin". Answers to interview questions were compiled and reported across cases. The data was then reviewed a second time and interpreted for emerging themes and patterns.^ Two types of verification were used in the study. Internal verification was done through interview transcript review and feedback by respondents. External verification was done through review and feedback on data analysis by readers who were experienced in management of staff development departments.^ All respondents were female, so Gilligan's concept of the "ethic of care" was examined as a decision making strategy. Three levels of caring which influenced decision making were found. They were caring: (a) for the organization, (b) for the employee, and (c) for the patient. The four existentials of the lived experience, relationality, corporeality, temporality and spatiality were also examined to reveal the everydayness of making change. ^
Resumo:
Purpose: Depression in older females is a significant and growing problem. Females who experience life stressors across the life span are at higher risk for developing problems with depression than their male counterparts. The primary aim of this study was (a) to examine gender-specific differences in the correlates of depression in older primary care patients based on baseline and longitudinal analyses; and (b) to examine the longitudinal effect of biopsychosocial risk factors on depression treatment outcomes in different models of behavioral healthcare (i.e., integrated care and enhanced referral). Method: This study used a quantitative secondary data analysis with longitudinal data from the Primary Care Research in Substance Abuse and Mental Health for Elderly (PRISM-E) study. A linear mixed model approach to hierarchical linear modeling was used for analysis using baseline assessment, and follow-up from three-month and six-month. Results: For participants diagnosed with major depressive disorder female gender was associated with increased depression severity at six-month compared to males at six-month. Further, the interaction between gender and life stressors found that females who reported loss of family and friends, family issues, money issues, medical illness was related to higher depression severity compared to males whereas lack of activities was related to lower depression severity among females compared to males. Conclusion: These findings suggest that gender moderated the relationship between specific life stressors and depression severity similar to how a protective factor can impact a person's response to a problem and reduce the negative impact of a risk factor on a problem outcome. Therefore, life stressors may be a reliable predictor of depression for both females and males in either behavioral health treatment model. This study concluded that life stressors influence males basic comfort, stability, and survival whereas life stressors influence females' development, personal growth, and happiness; therefore, life stressors may be a useful component to include in gender-based screening and assessment tools for depression. ^
Resumo:
The Ellison Executive Mentoring Inclusive Community Building (ICB) Model is a paradigm for initiating and implementing projects utilizing executives and professionals from a variety of fields and industries, university students, and pre-college students. The model emphasizes adherence to ethical values and promotes inclusiveness in community development. It is a hierarchical model in which actors in each succeeding level of operation serve as mentors to the next. Through a three-step process--content, process, and product--participants must be trained with this mentoring and apprenticeship paradigm in conflict resolution, and they receive sensitivitiy and diversity training, through an interactive and dramatic exposition. The content phase introduces participants to the model's philosophy, ethics, values and methods of operation. The process used to teach and reinforce its precepts is the mentoring and apprenticeship activities and projects in which the participants engage and whose end product demontrates their knowledge and understanding of the model's concepts. This study sought to ascertain from the participants' perspectives whether the model's mentoring approach is an effective means of fostering inclusiveness, based upon their own experiences in using it. The research utilized a qualitative approach and included data from field observations, individual and group interviews, and written accounts of participants' attitudes. Participants complete ICB projects utilizing the Ellison Model as a method of development and implementation. They generally perceive that the model is a viable tool for dealing with diversity issues whether at work, at school, or at home. The projects are also instructional in that whether participants are mentored or seve as apprentices, they gain useful skills and knowledge about their careers. Since the model is relatively new, there is ample room for research in a variety of areas including organizational studies to dertmine its effectiveness in combating problems related to various kinds of discrimination.
Resumo:
In the primary visual cortex, neurons with similar physiological features are clustered together in columns extending through all six cortical layers. These columns form modular orientation preference maps. Long-range lateral fibers are associated to the structure of orientation maps since they do not connect columns randomly; they rather cluster in regular intervals and interconnect predominantly columns of neurons responding to similar stimulus features. Single orientation preference maps – the joint activation of domains preferring the same orientation - were observed to emerge spontaneously and it was speculated whether this structured ongoing activation could be caused by the underlying patchy lateral connectivity. Since long-range lateral connections share many features, i.e. clustering, orientation selectivity, with visual inter-hemispheric connections (VIC) through the corpus callosum we used the latter as a model for long-range lateral connectivity. In order to address the question of how the lateral connectivity contributes to spontaneously generated maps of one hemisphere we investigated how these maps react to the deactivation of VICs originating from the contralateral hemisphere. To this end, we performed experiments in eight adult cats. We recorded voltage-sensitive dye (VSD) imaging and electrophysiological spiking activity in one brain hemisphere while reversible deactivating the other hemisphere with a cooling technique. In order to compare ongoing activity with evoked activity patterns we first presented oriented gratings as visual stimuli. Gratings had 8 different orientations distributed equally between 0º and 180º. VSD imaged frames obtained during ongoing activity conditions were then compared to the averaged evoked single orientation maps in three different states: baseline, cooling and recovery. Kohonen self-organizing maps were also used as a means of analysis without prior assumption (like the averaged single condition maps) on ongoing activity. We also evaluated if cooling had a differential effect on evoked and ongoing spiking activity of single units. We found that deactivating VICs caused no spatial disruption on the structure of either evoked or ongoing activity maps. The frequency with which a cardinally preferring (0º or 90º) map would emerge, however, decreased significantly for ongoing but not for evoked activity. The same result was found by training self-organizing maps with recorded data as input. Spiking activity of cardinally preferring units also decreased significantly for ongoing when compared to evoked activity. Based on our results we came to the following conclusions: 1) VICs are not a determinant factor of ongoing map structure. Maps continued to be spontaneously generated with the same quality, probably by a combination of ongoing activity from local recurrent connections, thalamocortical loop and feedback connections. 2) VICs account for a cardinal bias in the temporal sequence of ongoing activity patterns, i.e. deactivating VIC decreases the probability of cardinal maps to emerge spontaneously. 3) Inter- and intrahemispheric long-range connections might serve as a grid preparing primary visual cortex for likely junctions in a larger visual environment encompassing the two hemifields.
Resumo:
In the primary visual cortex, neurons with similar physiological features are clustered together in columns extending through all six cortical layers. These columns form modular orientation preference maps. Long-range lateral fibers are associated to the structure of orientation maps since they do not connect columns randomly; they rather cluster in regular intervals and interconnect predominantly columns of neurons responding to similar stimulus features. Single orientation preference maps – the joint activation of domains preferring the same orientation - were observed to emerge spontaneously and it was speculated whether this structured ongoing activation could be caused by the underlying patchy lateral connectivity. Since long-range lateral connections share many features, i.e. clustering, orientation selectivity, with visual inter-hemispheric connections (VIC) through the corpus callosum we used the latter as a model for long-range lateral connectivity. In order to address the question of how the lateral connectivity contributes to spontaneously generated maps of one hemisphere we investigated how these maps react to the deactivation of VICs originating from the contralateral hemisphere. To this end, we performed experiments in eight adult cats. We recorded voltage-sensitive dye (VSD) imaging and electrophysiological spiking activity in one brain hemisphere while reversible deactivating the other hemisphere with a cooling technique. In order to compare ongoing activity with evoked activity patterns we first presented oriented gratings as visual stimuli. Gratings had 8 different orientations distributed equally between 0º and 180º. VSD imaged frames obtained during ongoing activity conditions were then compared to the averaged evoked single orientation maps in three different states: baseline, cooling and recovery. Kohonen self-organizing maps were also used as a means of analysis without prior assumption (like the averaged single condition maps) on ongoing activity. We also evaluated if cooling had a differential effect on evoked and ongoing spiking activity of single units. We found that deactivating VICs caused no spatial disruption on the structure of either evoked or ongoing activity maps. The frequency with which a cardinally preferring (0º or 90º) map would emerge, however, decreased significantly for ongoing but not for evoked activity. The same result was found by training self-organizing maps with recorded data as input. Spiking activity of cardinally preferring units also decreased significantly for ongoing when compared to evoked activity. Based on our results we came to the following conclusions: 1) VICs are not a determinant factor of ongoing map structure. Maps continued to be spontaneously generated with the same quality, probably by a combination of ongoing activity from local recurrent connections, thalamocortical loop and feedback connections. 2) VICs account for a cardinal bias in the temporal sequence of ongoing activity patterns, i.e. deactivating VIC decreases the probability of cardinal maps to emerge spontaneously. 3) Inter- and intrahemispheric long-range connections might serve as a grid preparing primary visual cortex for likely junctions in a larger visual environment encompassing the two hemifields.
Resumo:
This is the second part of the assessment of primary energy conversions of oscillating water columns (OWCs) wave energy converters. In the first part of the research work, the hydrodynamic performance of OWC wave energy converter has been extensively examined, targeting on a reliable numerical assessment method. In this part of the research work, the application of the air turbine power take-off (PTO) to the OWC device leads to a coupled model of the hydrodynamics and thermodynamics of the OWC wave energy converters, in a manner that under the wave excitation, the varying air volume due to the internal water surface motion creates a reciprocating chamber pressure (alternative positive and negative chamber pressure), whilst the chamber pressure, in turn, modifies the motions of the device and the internal water surface. To do this, the thermodynamics of the air chamber is first examined and applied by including the air compressibility in the oscillating water columns for different types of the air turbine PTOs. The developed thermodynamics is then coupled with the hydrodynamics of the OWC wave energy converters. This proposed assessment method is then applied to two generic OWC wave energy converters (one bottom fixed and another floating), and the numerical results are compared to the experimental results. From the comparison to the model test data, it can be seen that this numerical method is capable of assessing the primary energy conversion for the oscillating water column wave energy converters.
Resumo:
Tumor angiogenesis is critical to tumor growth and metastasis, yet much is unknown about the role vascular cells play in the tumor microenvironment. A major outstanding challenge associated with studying tumor angiogenesis is that existing preclinical models are limited in their recapitulation of in vivo cellular organization in 3D. This disparity highlights the need for better approaches to study the dynamic interplay of relevant cells and signaling molecules as they are organized in the tumor microenvironment. In this thesis, we combined 3D culture of lung adenocarcinoma cells with adjacent 3D microvascular cell culture in 2-layer cell-adhesive, proteolytically-degradable poly(ethylene glycol) (PEG)-based hydrogels to study tumor angiogenesis and the impacts of neovascularization on tumor cell behavior.
In initial studies, 344SQ cells, a highly metastatic, murine lung adenocarcinoma cell line, were characterized alone in 3D in PEG hydrogels. 344SQ cells formed spheroids in 3D culture and secreted proangiogenic growth factors into the conditioned media that significantly increased with exposure to transforming growth factor beta 1 (TGF-β1), a potent tumor progression-promoting factor. Vascular cells alone in hydrogels formed tubule networks with localized activated TGF-β1. To study cancer cell-vascular cell interactions, the engineered 2-layer tumor angiogenesis model with 344SQ and vascular cell layers was employed. Large, invasive 344SQ clusters developed at the interface between the layers, and were not evident further from the interface or in control hydrogels without vascular cells. A modified model with spatially restricted 344SQ and vascular cell layers confirmed that observed 344SQ cluster morphological changes required close proximity to vascular cells. Additionally, TGF-β1 inhibition blocked endothelial cell-driven 344SQ migration.
Two other lung adenocarcinoma cell lines were also explored in the tumor angiogenesis model: primary tumor-derived metastasis-incompetent, murine 393P cells and primary tumor-derived metastasis-capable human A549 cells. These lung cancer cells also formed spheroids in 3D culture and secreted proangiogenic growth factors into the conditioned media. Epithelial morphogenesis varied for the primary tumor-derived cell lines compared to 344SQ cells, with far less epithelial organization present in A549 spheroids. Additionally, 344SQ cells secreted the highest concentration of two of the three angiogenic growth factors assessed. This finding correlated to 344SQ exhibiting the most pronounced morphological response in the tumor angiogenesis model compared to the 393P and A549 cell lines.
Overall, this dissertation demonstrates the development of a novel 3D tumor angiogenesis model that was used to study vascular cell-cancer cell interactions in lung adenocarcinoma cell lines with varying metastatic capacities. Findings in this thesis have helped to elucidate the role of vascular cells in tumor progression and have identified differences in cancer cell behavior in vitro that correlate to metastatic capacity, thus highlighting the usefulness of this model platform for future discovery of novel tumor angiogenesis and tumor progression-promoting targets.
Resumo:
Objective: To estimate the absolute treatment effect of statin therapy on major adverse cardiovascular events (MACE; myocardial infarction, stroke and vascular death) for the individual patient aged C70 years. Methods: Prediction models for MACE were derived in patients aged C70 years with (n = 2550) and without (n = 3253) vascular disease from the ‘‘PROspective Study of Pravastatin in Elderly at Risk’’ (PROSPER) trial and validated in the ‘‘Secondary Manifestations of ARTerial disease’’ (SMART) cohort study (n = 1442) and the ‘‘Anglo-Scandinavian Cardiac Outcomes Trial-Lipid Lowering Arm’’ (ASCOT-LLA) trial (n = 1893), respectively, using competing risk analysis. Prespecified predictors were various clinical characteristics including statin treatment. Individual absolute risk reductions (ARRs) for MACE in 5 and 10 years were estimated by subtracting ontreatment from off-treatment risk. Results: Individual ARRs were higher in elderly patients with vascular disease [5-year ARRs: median 5.1 %, interquartile range (IQR) 4.0–6.2 %, 10-year ARRs: median 7.8 %, IQR 6.8–8.6 %] than in patients without vascular disease (5-year ARRs: median 1.7 %, IQR 1.3–2.1 %, 10-year ARRs: 2.9 %, IQR 2.3–3.6 %). Ninetyeight percent of patients with vascular disease had a 5-year ARR C2.0 %, compared to 31 % of patients without vascular disease. Conclusions: With a multivariable prediction model the absolute treatment effect of a statin on MACE for individual elderly patients with and without vascular disease can be quantified. Because of high ARRs, treating all patients is more beneficial than prediction-based treatment for secondary prevention of MACE. For primary prevention of MACE, the prediction model can be used to identify those patients who benefit meaningfully from statin therapy.
Resumo:
The choice of model used to study human respiratory syncytial virus (RSV) infection is extremely important. RSV is a human pathogen that is exquisitely adapted to infection of human hosts. Rodent models, such as mice and cotton rats, are semi-permissive to RSV infection and do not faithfully reproduce hallmarks of RSV disease in humans. Furthermore, immortalized airway-derived cell lines, such as HEp-2, BEAS-2B, and A549 cells, are poorly representative of the complexity of the respiratory epithelium. The development of a well-differentiated primary pediatric airway epithelial cell models (WD-PAECs) allows us to simulate several hallmarks of RSV infection of infant airways. They therefore represent important additions to RSV pathogenesis modeling in human-relevant tissues. The following protocols describe how to culture and differentiate both bronchial and nasal primary pediatric airway epithelial cells and how to use these cultures to study RSV cytopathogenesis.
Resumo:
This study provides additional insight into how outdoor learning can be used as a vehicle to address transition issues. This study analyses the benefits of outdoor learning through the use of shared learning days with young people in the primary-secondary transition phase. This paper argues that a carefully designed programme of outdoor ‘shared learning days’ with young people in both phases working together is a sound model to help address the recommendations arising from specific transition issues (Mullan, 2014; Rose, 2009) through the delivery of aligned outcomes (cognitive, affective, interpersonal/social and physical/behavioural) and impact from learning science outdoors (Rickinson et al., 2004).
Resumo:
In this work, we propose a biologically inspired appearance model for robust visual tracking. Motivated in part by the success of the hierarchical organization of the primary visual cortex (area V1), we establish an architecture consisting of five layers: whitening, rectification, normalization, coding and polling. The first three layers stem from the models developed for object recognition. In this paper, our attention focuses on the coding and pooling layers. In particular, we use a discriminative sparse coding method in the coding layer along with spatial pyramid representation in the pooling layer, which makes it easier to distinguish the target to be tracked from its background in the presence of appearance variations. An extensive experimental study shows that the proposed method has higher tracking accuracy than several state-of-the-art trackers.