991 resultados para polymeric precursor method
Resumo:
Ascorbic acid is found in many food samples. Its clinical and technological importance demands an easyto- use, rapid, robust and inexpensive method of analysis. For this purpose, this work proposes a new flow procedure based on the oxidation of ascorbic acid by periodate. A new potentiometric periodate sensor was constructed to monitor this reaction. The selective membranes were of PVC with porphyrin-based sensing systems and a lipophilic cation as additive. The sensor displayed a near-Nernstian response for periodate over 1.0x10-2–6.0x10-6 M, with an anionic slope of 73.9 ± 0.9 mV decade-1. It was pH independent in acidic media and presented good selectivity features towards several inorganic anions. The flow set-up operated in double-channel, carrying a 5.0x10-4 M IO- 4 solution and a suitable buffer; these were mixed in a 50-cm reaction coil. The overall flow rate was 7 ml min-1 and the injection volume 70 µl. Under these conditions, a linear behaviour against concentration was observed for 17.7–194.0 µg ml-1, presenting slopes of 0.169 mV (mg/l)-1, a reproducibility of ±1.1 mV (n = 5), and a sampling rate of ~96 samples h-1. The proposed method was applied to the analysis of beverages and pharmaceuticals.
Resumo:
A 3D-mirror synthetic receptor for ciprofloxacin host–guest interactions and potentiometric transduction is presented. The host cavity was shaped on a polymeric surface assembled with methacrylic acid or 2-vinyl pyridine monomers by radical polymerization. Molecularly imprinted particles were dispersed in 2-nitrophenyl octyl ether and entrapped in a poly(vinyl chloride) matrix. The sensors exhibited a near-Nernstian response in steady state evaluations. Slopes and detection limits ranged from 26.8 to 50.0 mV decade−1 and 1.0 × 10−5 to 2.7 × 10−5 mol L−1, respectively. Good selectivity was observed for trimethoprim, enrofloxacin, tetracycline, cysteine, galactose, hydroxylamine, creatinine, ammonium chloride, sucrose, glucose, sulphamerazine and sulfadiazine. The sensors were successfully applied to the determination of ciprofloxacin concentrations in fish and in pharmaceuticals. The method presented offered the advantages of simplicity, accuracy, applicability to colored and turbid samples and automation feasibility, as well as confirming the use of molecularly imprinted polymers as ionophores for organic ion recognition in potentiometric transduction.
Resumo:
The main objective of this work was the development of polymeric structures, gel and films, generated from the dissolution of the Chitin-Glucan Complex (CGC) in biocompatible ionic liquids for biomedical applications. Similar as chitin, CGC is only soluble in some special solvents which are toxic and corrosive. Due to this fact and the urgent development of biomedical applications, the need to use biocompatible ionic liquids to dissolve the CGC is indispensable. For the dissolution of CGC, the biocompatible ionic liquid used was Choline acetate. Two different CGC’s, KiOnutrime from KitoZyme and biologically produced CGC from Faculdade de Ciencias e Tecnologia (FCT) - Universidade Nova de Lisboa, were characterized in order to develop biocompatible wound dressing materials. The similar result is shown in term of the ratio of chitin:glucan, which is 1:1.72 for CGC-FCT and 1:1.69 for CGC-Commercial. For the analysis of metal element content, water and inorganic salts content and protein content, both polymers showed some discrepancies, where the content in CGC-FCT is always higher compared to the commercial one. The different characterization results between CGC-FCT and CGC-Commercial could be addressed to differences in the purification method, and the difference of its original strain yeast, whereas CGC-FCT is derived from P.pastoris and the commercial CGC is from A.niger. This work also investigated the effect of biopolymers, temperature dissolution, non-solvent composition on the characteristics of generated polymeric structure with biocompatible ionic liquid. The films were prepared by casting a polymer mixture, immersion in a non-solvent, followed by drying at ambient temperature. Three different non-solvents were tested in phase inversion method, i.e. water, methanol, and glycerol. The results indicate that the composition of non-solvent in the coagulation bath has great influence in generated polymeric structure. Water was found to be the best coagulant for producing a CGC polymeric film structure. The characterizations that have been done include the analysis of viscosity and viscoelasticity measurement, as well as sugar composition in the membrane and total sugar that was released during the phase inversion method. The rheology test showed that both polymer mixtures exhibit a non- Newtonian shear thinning behaviour. Where the viscosity and viscoelasticity test reveal that CGCFCT mixture has a typical behaviour of a viscous solution with entangled polymer chains and CGCCommercial mixture has true gel behaviour. The experimental results show us that the generated CGC solution from choline acetate could be used to develop both polymeric film structure and gel. The generated structures are thermally stable at 100° C, and are hydrophilic. The produced films have dense structure and mechanical stabilities against puncture up to 60 kPa.
Resumo:
Polymeric nanoparticles (PNPs) have attracted considerable interest over the last few years due to their unique properties and behaviors provided by their small size. Such materials could be used in a wide range of applications such as diagnostics and drug delivery. Advantages of PNPs include controlled release, protection of drug molecules and its specific targeting, with concomitant increasing of the therapeutic index. In this work, novel sucrose and cholic acid based PNPs were prepared from different polymers, namely polyethylene glycol (PEG), poly(D,L-lactic-co-glycolic acid) (PLGA) and PLGA-co-PEG copolymer. In these PNP carriers, cholic acid will act as a drug incorporation site and the carbohydrate as targeting moiety. The uptake of nanoparticles into cells usually involves endocytotic processes, which depend primarily on their size and surface characteristics. These properties can be tuned by the nanoparticle preparation method. Therefore, the nanoprecipitation and the emulsion-solvent evaporation method were applied to prepare the PNPs. The influence of various parameters, such as concentration of the starting solution, evaporation method and solvent properties on the nanoparticle size, size distribution and morphology were studied. The PNPs were characterized by using atomic force microscopy (AFM), scanning electron microscopy (SEM) and dynamic light scattering (DLS) to assess their size distribution and morphology. The PNPs obtained by nanoprecipitation ranged in size between 90 nm and 130 nm with a very low polydispersity index (PDI < 0.3). On the other hand, the PNPs produced by the emulsion-solvent evaporation method revealed particle sizes around 300 nm with a high PDI value. More detailed information was found in AFM and SEM images, which demonstrated that all these PNPs were regularly spherical. ζ-potential measurements were satisfactory and evidenced the importance of sucrose moiety on the polymeric system, which was responsible for the obtained negative surface charge, providing colloidal stability. The results of this study show that sucrose and cholic acid based polymeric conjugates can be successfully used to prepare PNPs with tunable physicochemical characteristics. In addition, it provides novel information about the materials used and the methods applied. It is hoped that this work will be useful for the development of novel carbohydrate based nanoparticles for biomedical applications, specifically for targeted drug delivery.
Resumo:
Injectable biomaterials with in situ cross-linking reactions have been suggested to minimize the invasiveness associated with most implantation procedures. However, problems related with the rapid liquid-to-gel transition reaction can arise because it is difficult to predict the reliability of the reaction and its end products, as well as to mitigate cytotoxicity to the surrounding tissues. An alternative minimally invasive approach to deliver solid implants in vivo is based on injectable microparticles, which can be processed in vitro with high fidelity and reliability, while showing low cytotoxicity. Their delivery to the defect can be performed by injection through a small diameter syringe needle. We present a new methodology for the continuous, solvent- and oil-free production of photopolymerizable microparticles containing encapsulated human dermal fibroblasts. A precursor solution of cells in photo-reactive PEG-fibrinogen (PF) polymer was transported through a transparent injector exposed to light-irradiation before being atomized in a jet-in-air nozzle. Shear rheometry data provided the cross-linking kinetics of each PF/cell solution, which was then used to determine the amount of irradiation required to partially polymerize the mixture prior to atomization. The partially polymerized drops fell into a gelation bath for further polymerization. The system was capable of producing cell-laden microparticles with high cellular viability, with an average diameter of between 88.1 µm to 347.1 µm and a dispersity of between 1.1 and 2.4, depending on the parameters chosen.
Resumo:
In schizophrenia patients, glutathione dysregulation at the gene, protein and functional levels, leads to N-methyl-D-aspartate (NMDA) receptor hypofunction. These patients also exhibit deficits in auditory sensory processing that manifests as impaired mismatch negativity (MMN), which is an auditory evoked potential (AEP) component related to NMDA receptor function. N-acetyl-cysteine (NAC), a glutathione precursor, was administered to patients to determine whether increased levels of brain glutathione would improve MMN and by extension NMDA function. A randomized, double-blind, cross-over protocol was conducted, entailing the administration of NAC (2 g/day) for 60 days and then placebo for another 60 days (or vice versa). 128-channel AEPs were recorded during a frequency oddball discrimination task at protocol onset, at the point of cross-over, and at the end of the study. At the onset of the protocol, the MMN of patients was significantly impaired compared to sex- and age- matched healthy controls (p=0.003), without any evidence of concomitant P300 component deficits. Treatment with NAC significantly improved MMN generation compared with placebo (p=0.025) without any measurable effects on the P300 component. MMN improvement was observed in the absence of robust changes in assessments of clinical severity, though the latter was observed in a larger and more prolonged clinical study. This pattern suggests that MMN enhancement may precede changes to indices of clinical severity, highlighting the possible utility AEPs as a biomarker of treatment efficacy. The improvement of this functional marker may indicate an important pathway towards new therapeutic strategies that target glutathione dysregulation in schizophrenia.
Resumo:
Background Carotenoids are the most widespread group of pigments found in nature. In addition to their role in the physiology of the plant, carotenoids also have nutritional relevance as their incorporation in the human diet provides health benefits. In non-photosynthetic tissues, carotenoids are synthesized and stored in specialized plastids called chromoplasts. At present very little is known about the origin of the metabolic precursors and cofactors required to sustain the high rate of carotenoid biosynthesis in these plastids. Recent proteomic data have revealed a number of biochemical and metabolic processes potentially operating in fruit chromoplasts. However, considering that chloroplast to chromoplast differentiation is a very rapid process during fruit ripening, there is the possibility that some of the proteins identified in the proteomic analysis could represent remnants no longer having a functional role in chromoplasts. Therefore, experimental validation is necessary to prove whether these predicted processes are actually operative in chromoplasts. Results A method has been established for high-yield purification of tomato fruit chromoplasts suitable for metabolic studies. Radiolabeled precursors were efficiently incorporated and further metabolized in isolated chromoplast. Analysis of labeled lipophilic compounds has revealed that lipid biosynthesis is a very efficient process in chromoplasts, while the relatively low incorporation levels found in carotenoids suggest that lipid production may represent a competing pathway for carotenoid biosynthesis. Malate and pyruvate are efficiently converted into acetyl-CoA, in agreement with the active operation of the malic enzyme and the pyruvate dehydrogenase complex in the chromoplast. Our results have also shown that isolated chromoplasts can actively sustain anabolic processes without the exogenous supply of ATP, thus suggesting that these organelles may generate this energetic cofactor in an autonomous way. Conclusions We have set up a method for high yield purification of intact tomato fruit chromoplasts suitable for precursor uptake assays and metabolic analyses. Using targeted radiolabeled precursors we have been able to unravel novel biochemical and metabolic aspects related with carotenoid and lipid biosynthesis in tomato fruit chromoplasts. The reported chromoplast system could represent a valuable platform to address the validation and characterization of functional processes predicted from recent transcriptomic and proteomic data.
Resumo:
Genes of interest can be targeted specifically to respiratory epithelial cells in intact animals with high efficiency by exploiting the receptor-mediated endocytosis of the polymeric immunoglobulin receptor. A DNA carrier, consisting of the Fab portion of polyclonal antibodies raised against rat secretory component covalently linked to poly-L-lysine, was used to introduce plasmids containing different reporter genes into airway epithelial cells in vivo. We observed significant levels of luciferase enzyme activity in protein extracts from the liver and lung, achieving maximum values of 13,795 +/- 4,431 and 346,954 +/- 199,120 integrated light units (ILU) per milligram of protein extract, respectively. No luciferase activity was detected in spleen or heart, which do not express the receptor. Transfections using complexes consisting of an irrelevant plasmid (pCMV lacZ) bound to the bona fide carrier or the expression plasmid (pGEMluc) bound to a carrier based on an irrelevant Fab fragment resulted in background levels of luciferase activity in all tissues examined. Thus, only tissues that contain cells bearing the polymeric immunoglobulin receptor are transfected, and transfection cannot be attributed to the nonspecific uptake of an irrelevant carrier-DNA complex. Specific mRNA from the luciferase gene was also detected in the lungs of transfected animals. To determine which cells in the lungs are transfected by this method, DNA complexes were prepared containing expression plasmids with genes encoding the bacterial beta-galactosidase or the human interleukin 2 receptor. Expression of these genes was localized to the surface epithelium of the airways and the submucosal glands, and not the bronchioles and alveoli. Receptor-mediated endocytosis can be used to introduce functional genes into the respiratory epithelium of rats, and may be a useful technique for gene therapy targeting the lung.
Resumo:
Glutathione (GSH) dysregulation at the gene, protein, and functional levels has been observed in schizophrenia patients. Together with disease-like anomalies in GSH deficit experimental models, it suggests that such redox dysregulation can play a critical role in altering neural connectivity and synchronization, and thus possibly causing schizophrenia symptoms. To determine whether increased GSH levels would modulate EEG synchronization, N-acetyl-cysteine (NAC), a glutathione precursor, was administered to patients in a randomized, double-blind, crossover protocol for 60 days, followed by placebo for another 60 days (or vice versa). We analyzed whole-head topography of the multivariate phase synchronization (MPS) for 128-channel resting-state EEGs that were recorded at the onset, at the point of crossover, and at the end of the protocol. In this proof of concept study, the treatment with NAC significantly increased MPS compared to placebo over the left parieto-temporal, the right temporal, and the bilateral prefrontal regions. These changes were robust both at the group and at the individual level. Although MPS increase was observed in the absence of clinical improvement at a group level, it correlated with individual change estimated by Liddle's disorganization scale. Therefore, significant changes in EEG synchronization induced by NAC administration may precede clinically detectable improvement, highlighting its possible utility as a biomarker of treatment efficacy. TRIAL REGISTRATION: ClinicalTrials.gov NCT01506765.
Resumo:
A 6008 base pair fragment of the vaccinia virus DNA containing the gene for the precursor of the major core protein 4 a, which has been designated P4 a, was sequenced. A long open reading frame (ORF) encoding a protein of molecular weight 102,157 started close to the position where the P4 a mRNA had been mapped. Analysis of the mRNA by S1 nuclease mapping and primer extension indicated that the 5' end defined by the former method is not the true 5' end. This suggests that the P4 a coding region is preceded by leader sequences that are not derived from the immediate vicinity of the gene, similar to what has been reported for another late vaccinia virus mRNA. The sequenced DNA contained several further ORFs on the same, or opposite DNA strand, providing further evidence for the close spacing of protein-coding sequences in the viral genome.
Resumo:
The aim of the present study was to develop novel daptomycin-loaded acrylic microparticles with improved release profiles and antibacterial activity against two clinically relevant methicillin-susceptible and methicillin-resistant Staphylococcus aureus strains (MSSA and MRSA, respectively). Daptomycin was encapsulated into poly(methyl methacrylate) (PMMA) and PMMA-Eudragit RL 100 (EUD) microparticles by a double emulsion-solvent evaporation method. For comparison purposes similar formulations were prepared with vancomycin. Particle morphology, size distribution, encapsulation efficiency, surface charge, physicochemical properties, in vitro release and biocompatibility were assessed. Particles exhibited a micrometer size and a spherical morphology. The addition of EUD to the formulation caused a shift in the surface charge of the particles from negative zeta potential values (100% PMMA formulations) to strongly positive. It also improved daptomycin encapsulation efficiency and release, whereas vancomycin encapsulation and release were strongly hindered. Plain and antibiotic-loaded particles presented comparable biocompatibility profiles. The antibacterial activity of the particles was assessed by isothermal microcalorimetry against both MSSA and MRSA. Daptomycin-loaded PMMA-EUD particles presented the highest antibacterial activity against both strains. The addition of 30% EUD to the daptomycin-loaded PMMA particles caused a 40- and 20-fold decrease in the minimum inhibitory (MIC) and bactericidal concentration (MBC) values, respectively, when compared to the 100% PMMA formulations. On the other hand, vancomycin-loaded microparticles presented the highest antibacterial activity in PMMA particles. Unlike conventional methods, isothermal microcalorimetry proved to be a real-time, sensitive and accurate method for assessment of antibacterial activity of antibiotic-loaded polymeric microparticles. Finally, the addition of EUD to formulations proved to be a powerful strategy to improve daptomycin encapsulation efficiency and release, and consequently improving the microparticles activity against two relevant S. aureus strains.
Resumo:
A rapid, expedient and enantioselective method for the synthesis of beta-hydroxy amines and monosubstituted aziridines in up to 99% e.e., via asymmetric transfer hydrogenation of a-amino ketones and cyclisation through treatment with tosyl chloride and base, is described. (1R,2R)-N-(para-toluenesulfonyl)-1,2-ethylenediamine with formic acid has been utilised as a ligand for the Ruthenium (II) catalysed enantioselective transfer hydrogenation of the ketones.The chiral 2-methyl aziridine, which is a potentially more efficient bonding agent for Rocket Solid Propellant has been successfully achieved.
Resumo:
Tin oxide (SnO2) is widely used in industry as raw material for electronic devices, plating of different types of materials, for dyes and pigments, for electroplating, heterogeneous catalysis, etc. In this work SnO2 was obtained by a controlled precipitation method with special attention to the effects the tin precursor has on the microstructure of the final product. The most appropriate pH for obtaining SnO2 with the rutile structure as the main phase is 6.25 for SnCl2 and 6.40 for SnSO4. After heat treatment at 600 °C, particles of nanometric order (~10 - 30 nm approx) were obtained. The characterization of the solid phase was made by X-ray diffraction (XRD), thermal analysis (DTA/TG), transmission electron microscopy (TEM) and Fourier transformed infrared spectroscopy (FTIR).
Resumo:
The spray-drying technique has been widely used for drying heat-sensitive foods, pharmaceuticals, and other substances, because it leads to rapid solvent evaporation from droplets. This method involves the transformation of a feed from a fluid state into a dried particulate, by spraying the feed into a hot medium. Despite being most often considered a dehydration process, spray drying can also be used as an encapsulation method. Therefore, this work proposes the use of a simple and low-cost ultrasonic spray dryer system to produce spherical microparticles. This equipment was successfully applied to the preparation of dextrin microspheres on a laboratory scale and for academic purposes.
Resumo:
Ion exchange method was employed by means of surface modification of the glass powders of LZSA (Li2O-ZrO2-SiO2-Al2O3) system submitted to a 70wt% NaNO3/30wt% NaSO4 bath salt followed by a heat treatment. Chemical analysis by X-ray fluorescence was used to evaluate the efficiency of ion exchange, while optical dilatometry was employed to evaluate sintering of compacts. Evaluation of the structure of sintered bodies was made by scanning electron microscopy. Substitution of Li+ ions by Na+ ions on the surface of powders during heat treatments of 450 and 600 ºC for 2-10 h promoted an increase in densification of the sintered bodies.