986 resultados para polylysine hydrobromide modified cellulose film prepn
Resumo:
‘Nobody knows anything’, said William Goldman of studio filmmaking. The rule is ever more apt as we survey the radical changes that digital distribution, along with the digitisation of production and exhibition, is wreaking on global film circulation. Digital Disruption: Cinema Moves On-line helps to make sense of what has happened in the short but turbulent history of on-line distribution. It provides a realistic assessment of the genuine and not-so-promising methods that have been tried to address the disruptions that moving from ‘analogue dollars’ to ‘digital cents’ has provoked in the film industry. Paying close attention to how the Majors have dealt with the challenges – often unsuccessfully – it focuses as much attention on innovations and practices outside the mainstream. Throughout, it is alive to, and showcases, important entrepreneurial innovations such as Mubi, Jaman, Withoutabox and IMDb. Written by leading academic commentators that have followed the fortunes of world cinema closely and passionately, as well as experienced hands close to the fluctuating fortunes of the industry, Digital Disruption: Cinema Moves On-line is an indispensable guide to great changes in film and its audiences.
Resumo:
Genetically modified or engineered foods are produced from rapidly expanding technologies that have sparked international debates and concerns about health and safety. These concerns focus on the potential dangers to human health, the risks of genetic pollution, and the demise of alternative farming techniques as well as biopiracy and economic exploitation by large private corporations. This article discusses the findings of the world's first Royal Commission on Genetic Modification conducted in New Zealand and reveals that there are potential social, ecological and economic risks created by genetically modified foods that require closer criminological scrutiny. As contemporary criminological discourses continue to push new boundaries in areas of crimes of the economy, environmental pollution, risk management, governance and globalization, the potential concerns posed by genetically modified foods creates fertile ground for criminological scholarship and activism.
Resumo:
Several studies of the surface effect on bending properties of a nanowire (NW) have been conducted. However, these analyses are mainly based on theoretical predictions, and there is seldom integration study in combination between theoretical predictions and simulation results. Thus, based on the molecular dynamics (MD) simulation and different modified beam theories, a comprehensive theoretical and numerical study for bending properties of nanowires considering surface/intrinsic stress effects and axial extension effect is conducted in this work. The discussion begins from the Euler-Bernoulli beam theory and Timoshenko beam theory augmented with surface effect. It is found that when the NW possesses a relatively small cross-sectional size, these two theories cannot accurately interpret the true surface effect. The incorporation of axial extension effect into Euler-Bernoulli beam theory provides a nonlinear solution that agrees with the nonlinear-elastic experimental and MD results. However, it is still found inaccurate when the NW cross-sectional size is relatively small. Such inaccuracy is also observed for the Euler-Bernoulli beam theory augmented with both contributions from surface effect and axial extension effect. A comprehensive model for completely considering influences from surface stress, intrinsic stress, and axial extension is then proposed, which leads to good agreement with MD simulation results. It is thus concluded that, for NWs with a relatively small cross-sectional size, a simple consideration of surface stress effect is inappropriate, and a comprehensive consideration of the intrinsic stress effect is required.
Resumo:
The search for new multipoint, multidirectional strain sensing devices has received a new impetus since the discovery of carbon nanotubes. The excellent electrical, mechanical, and electromechanical properties of carbon nanotubes make them ideal candidates as primary materials in the design of this new generation of sensing devices. Carbon nanotube based strain sensors proposed so far include those based on individual carbon nanotubes for integration in nano or micro elecromechanical systems (NEMS/MEMS) [1], or carbon nanotube films consisting of spatially connected carbon nanotubes [2], carbon nanotube - polymer composites [3,4] for macroscale strain sensing. Carbon nanotube films have good strain sensing response and offer the possibility of multidirectional and multipoint strain sensing, but have poor performance due to weak interaction between carbon nanotubes. In addition, the carbon nanotube film sensor is extremely fragile and difficult to handle and install. We report here the static and dynamic strain sensing characteristics as well as temperature effects of a sandwich carbon nanotube - polymer sensor fabricated by infiltrating carbon nanotube films with polymer.
Resumo:
A century ago, as the Western world embarked on a period of traumatic change, the visual realism of photography and documentary film brought print and radio news to life. The vision that these new mediums threw into stark relief was one of intense social and political upheaval: the birth of modernity fired and tempered in the crucible of the Great War. As millions died in this fiery chamber and the influenza pandemic that followed, lines of empires staggered to their fall, and new geo-political boundaries were scored in the raw, red flesh of Europe. The decade of 1910 to 1919 also heralded a prolific period of artistic experimentation. It marked the beginning of the social and artistic age of modernity and, with it, the nascent beginnings of a new art form: film. We still live in the shadow of this violent, traumatic and fertile age; haunted by the ghosts of Flanders and Gallipoli and its ripples of innovation and creativity. Something happened here, but to understand how and why is not easy; for the documentary images we carry with us in our collective cultural memory have become what Baudrillard refers to as simulacra. Detached from their referents, they have become referents themselves, to underscore other, grand narratives in television and Hollywood films. The personal histories of the individuals they represent so graphically–and their hope, love and loss–are folded into a national story that serves, like war memorials and national holidays, to buttress social myths and values. And, as filmic images cross-pollinate, with each iteration offering a new catharsis, events that must have been terrifying or wondrous are abstracted. In this paper we first discuss this transformation through reference to theories of documentary and memory–this will form a conceptual framework for a subsequent discussion of the short film Anmer. Produced by the first author in 2010, Anmer is a visual essay on documentary, simulacra and the symbolic narratives of history. Its form, structure and aesthetic speak of the confluence of documentary, history, memory and dream. Located in the first decade of the twentieth century, its non-linear narratives of personal tragedy and poetic dreamscapes are an evocative reminder of the distance between intimate experience, grand narratives, and the mythologies of popular films. This transformation of documentary sources not only played out in the processes of the film’s production, but also came to form its theme.
Resumo:
The Film Studio sheds new light on the evolution of global film production, highlighting the role of film studios worldwide. The authors explore the contemporary international production environment, alleging that global competition is best understood as an unequal and unstable partnership between the 'design interest' of footloose producers and the 'location interest' of local actors. Ben Goldsmith and Tom O'Regan identify various types of film studios and investigate the consequences for Hollywood, international film production, and the studio locations.
Resumo:
Hollywood films and television programs are watched by a global audience. While many of these productions are still made in southern California, the last twenty years have seen new production centres emerge in the US, Canada and other locations worldwide. Global Hollywood has been made possible by this growing number of Local Hollywoods: locations equipped with the requisite facilities, resources and labour, as well as the political will and tax incentives, to attract and retain high-budget, Hollywood-standard projects. This new book gives an unprecedented insight into how the Gold Coast became the first outpost of Hollywood in Australia. When a combination of forces drove Hollywood studios and producers to work outside California, the Gold Coast's unique blend of government tax support, innovative entrepreneurs and diverse natural settings made it a perfect choice to host Hollywood productions. 'Local Hollywood' makes an essential contribution to the field of film and media studies, as well as giving film buffs a behind-the-scenes tour of the film industry.
Resumo:
The interventions by the government in the production and circulation of film in late 1960s transformed the Australian cinema industry into a bureaucratic cinema because of its established agencies and institutions for the benefit of filmmakers. Training options expanded by the commencement of the Australian Film and Television School and the Film, Radio and Television Board of the Australia Council, which ran compulsory orientation seminars and workshops on the use of new equipments, helped the aspiring filmmakers to access money from the council's Basic Production Fund.
Resumo:
Despite being set in an unnamed Texan city, Ghost Rider (Mark Steven Johnson, 2007) was a landmark film for Melbourne. It was the first international production to be made at the Central City (now Docklands) Studios, much to the relief of the heavily-invested state government. And it demonstrated to the world (or more importantly, to producers resident in a small part of southern California), that the city was willing and available to be made over and made up to fit even (especially!) the most stupid filmmaking fantasies. Announcing the imminent arrival of the production in October 2004, the Herald Sun boldly predicted that '[c]ity lanes, Telstra Dome and the Yarra River will be the stars of the new action film'. In fact Melbourne is, as the filmmakers intended, (virtually) unidentifiable onscreen. For the Victorian State government, Ausfilm, Film Victoria and the Melbourne Film Office, this lack of specificity was something to be celebrated; a few months before Ghost Rider went in to production, the then State Minister for Innovation, John Brumby, declared that 'it's almost inconceivable that [Ghost Rider] won't put Melbourne on the map internationally'.
Resumo:
Developing awareness of and maintaining interest in Korea and Korean culture for non-language secondary and tertiary students continues to challenge educators in Australia. A lack of appropriate and accessible creative and cultural materials is a key factor contributing to this challenge. In light of changes made to 'fair use' guidelines for the Digital Millennium Copyright Act in the United States in July 2010, and in order to prepare for a time in the near future when Australian copyright regulations might follow suit, this article offers a framework for utilizing film and digital media contents in the classroom. Case studies of the short digital animation film 'Birthday Boy' (2004) and the feature film The Divine Weapon (2008) are presented in order to illustrate new educational approaches to popular Korean films---the cinematic component of the 'Korean Wave' ('Hanryu' or 'Hallyu' in Korean). It is hoped that this work-in-progress will enable teachers to inspire students with limited language skills to learn more about Korean popular culture, history, and tradition as well as media, politics, and genre studies in dynamic ways through the use of films as cultural texts in the classroom.
Resumo:
Objectives: To measure tear film surface quality (TFSQ) using dynamic high-speed videokeratoscopy during short-term (8 hours) use of rigid and soft contact lenses. Methods: A group of fourteen subjects wore 3 different types of contact lenses on 3 different non-consecutive days (order randomized) in one eye only. Subjects were screened to exclude those with dry eye. The lenses included a PMMA hard, an RGP (Boston XO) and a soft silicone hydrogel lens. Three 30 second long high speed videokeratoscopy recordings were taken with contact lenses in-situ, in the morning and again after 8 hours of contact lens wear, both in normal and suppressed blinking conditions. Recordings were also made on a baseline day with no contact lens wear. Results: The presence of a contact lens in the eye had a significant effect on the mean TFSQ in both natural and suppressed blinking conditions (p=0.001 and p=0.01 respectively, repeated measures ANOVA). TFSQ was worse with all the lenses compared to no lens in the eye (in the afternoon during both normal and suppressed blinking conditions (all p<0.05). In natural blinking conditions, the mean TFSQ for the PMMA and RGP lenses was significantly worse than the baseline day (no lens) for both morning and afternoon measures (p<0.05). Conclusions: This study shows that both rigid and soft contact lenses adversely affect the TFSQ in both natural and suppressed blinking conditions. No significant differences were found between the lens types and materials. Keywords: Tear film surface quality, rigid contact lens, soft contact lens, dynamic high-speed videokeratoscopy
Resumo:
Two types of carbon nanotube nanocomposite strain sensors were prepared by mixing carbon nanotubes with epoxy (nanocomposite sensor) and sandwiching a carbon nanotube film between two epoxy layers (sandwich sensor). The conductivity, response and sensitivity to static and dynamic mechanical strains in these sensors were investigated. The nanocomposite sensor with 2-3 wt.% carbon nanotube demonstrated high sensitivity to mechanical strain and environmental temperature, with gauge factors of 5-8. On the other hand, a linear relationship between conductivity and dynamic mechanical strain was observed in the sandwich sensor. The sandwich sensor was also not sensitive to temperature although its strain sensitivity (gauge factor of about 3) was lower as compared with the nanocomposite sensor. Both sensors have excellent response to static and dynamic strains, thereby having great potential for strain sensing applications.
Low temperature synthesis of carbon nanotubes on indium tin oxide electrodes for organic solar cells
Resumo:
The electrical performance of indium tin oxide (ITO) coated glass was improved by including a controlled layer of carbon nanotubes directly on top of the ITO film. Multi-wall carbon nanotubes (MWCNTs) were synthesized by chemical vapor deposition, using ultra-thin Fe layers as catalyst. The process parameters (temperature, gas flow and duration) were carefully refined to obtain the appropriate size and density of MWCNTs with a minimum decrease of the light harvesting in the cell. When used as anodes for organic solar cells based on poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM), the MWCNT-enhanced electrodes are found to improve the charge carrier extraction from the photoactive blend, thanks to the additional percolation paths provided by the CNTs. The work function of as-modified ITO surfaces was measured by the Kelvin probe method to be 4.95 eV, resulting in an improved matching to the highest occupied molecular orbital level of the P3HT. This is in turn expected to increase the hole transport and collection at the anode, contributing to the significant increase of current density and open circuit voltage observed in test cells created with such MWCNT-enhanced electrodes.