983 resultados para phytochelatins synthase gene
Resumo:
INTRODUCTION In retrospective analyses of patients with nonsquamous non-small-cell lung cancer treated with pemetrexed, low thymidylate synthase (TS) expression is associated with better clinical outcomes. This phase II study explored this association prospectively at the protein and mRNA-expression level. METHODS Treatment-naive patients with nonsquamous non-small-cell lung cancer (stage IIIB/IV) had four cycles of first-line chemotherapy with pemetrexed/cisplatin. Nonprogressing patients continued on pemetrexed maintenance until progression or maximum tolerability. TS expression (nucleus/cytoplasm/total) was assessed in diagnostic tissue samples by immunohistochemistry (IHC; H-scores), and quantitative reverse-transcriptase polymerase chain reaction. Cox regression was used to assess the association between H-scores and progression-free/overall survival (PFS/OS) distribution estimated by the Kaplan-Meier method. Maximal χ analysis identified optimal cutpoints between low TS- and high TS-expression groups, yielding maximal associations with PFS/OS. RESULTS The study enrolled 70 patients; of these 43 (61.4%) started maintenance treatment. In 60 patients with valid H-scores, median (m) PFS was 5.5 (95% confidence interval [CI], 3.9-6.9) months, mOS was 9.6 (95% CI, 7.3-15.7) months. Higher nuclear TS expression was significantly associated with shorter PFS and OS (primary analysis IHC, PFS: p < 0.0001; hazard ratio per 1-unit increase: 1.015; 95%CI, 1.008-1.021). At the optimal cutpoint of nuclear H-score (70), mPFS in the low TS- versus high TS-expression groups was 7.1 (5.7-8.3) versus 2.6 (1.3-4.1) months (p = 0.0015; hazard ratio = 0.28; 95%CI, 0.16-0.52; n = 40/20). Trends were similar for cytoplasm H-scores, quantitative reverse-transcriptase polymerase chain reaction and other clinical endpoints (OS, response, and disease control). CONCLUSIONS The primary endpoint was met; low TS expression was associated with longer PFS. Further randomized studies are needed to explore nuclear TS IHC expression as a potential biomarker of clinical outcomes for pemetrexed treatment in larger patient cohorts. © 2013 by the International Association for the Study of Lung Cancer.
Resumo:
In the recent decision Association for Molecular Pathology v. Myriad Genetics1, the US Supreme Court held that naturally occurring sequences from human genomic DNA are not patentable subject matter. Only certain complementary DNAs (cDNA), modified sequences and methods to use sequences are potentially patentable. It is likely that this distinction will hold for all DNA sequences, whether animal, plant or microbial2. However, it is not clear whether this means that other naturally occurring informational molecules, such as polypeptides (proteins) or polysaccharides, will also be excluded from patents. The decision underscores a pressing need for precise analysis of patents that disclose and reference genetic sequences, especially in the claims. Similarly, data sets, standards compliance and analytical tools must be improved—in particular, data sets and analytical tools must be made openly accessible—in order to provide a basis for effective decision making and policy setting to support biological innovation. Here, we present a web-based platform that allows such data aggregation, analysis and visualization in an open, shareable facility. To demonstrate the potential for the extension of this platform to global patent jurisdictions, we discuss the results of a global survey of patent offices that shows that much progress is still needed in making these data freely available for aggregation in the first place.
Resumo:
In plants, silencing of mRNA can be transmitted from cell to cell and also over longer distances from roots to shoots. To investigate the long-distance mechanism, WT and mutant shoots were grafted onto roots silenced for an mRNA. We show that three genes involved in a chromatin silencing pathway, NRPD1a encoding RNA polymerase IVa, RNA-dependent RNA polymerase 2 (RDR2), and DICER-like 3 (DCL3), are required for reception of long-distance mRNA silencing in the shoot. A mutant representing a fourth gene in the pathway, argonaute4 (ago4), was also partially compromised in the reception of silencing. This pathway produces 24-nt siRNAs and resulted in decapped RNA, a known substrate for amplification of dsRNA by RDR6. Activation of silencing in grafted shoots depended on RDR6, but no 24-nt siRNAs were detected in mutant rdr6 shoots, indicating that RDR6 also plays a role in initial signal perception. After amplification of decapped transcripts, DCL4 and DCL2 act hierarchically as they do in antiviral resistance to produce 21- and 22-nt siRNAs, respectively, and these guide mRNA degradation. Several dcl genotypes were also tested for their capacity to transmit the mobile silencing signal from the rootstock. dcl1-8 and a dcl2 dcl3 dcl4 triple mutant are compromised in micro-RNA and siRNA biogenesis, respectively, but were unaffected in signal transmission. © 2007 by The National Academy of Sciences of the USA.
Resumo:
Many examples of extreme virus resistance and posttranscriptional gene silencing of endogenous or reporter genes have been described in transgenic plants containing sense or antisense transgenes. In these cases of either cosuppression or antisense suppression, there appears to be induction of a surveillance system within the plant that specifically degrades both the transgene and target RNAs. We show that transforming plants with virus or reporter gene constructs that produce RNAs capable of duplex formation confer virus immunity or gene silencing on the plants. This was accomplished by using transcripts from one sense gene and one antisense gene colocated in the plant genome, a single transcript that has self-complementarity, or sense and antisense transcripts from genes brought together by crossing. A model is presented that is consistent with our data and those of other workers, describing the processes of induction and execution of posttranscriptional gene silencing.
Resumo:
Upward long-distance mobile silencing has been shown to be phloem mediated in several different solanaceous species. We show that the Arabidopsis (Arabidopsis thaliana) seedling grafting system and a counterpart inducible system generate upwardly spreading long-distance silencing that travels not in the phloem but by template-dependent reiterated short-distance cell-to-cell spread through the cells of the central stele. Examining the movement of the silencing front revealed a largely unrecognized zone of tissue, below the apical meristem, that is resistant to the silencing signal and that may provide a gating or protective barrier against small RNA signals. Using a range of auxin and actin transport inhibitors revealed that, in this zone, alteration of vesicular transport together with cytoskeleton dynamics prevented or retarded the spread of the silencing signal. This suggests that small RNAs are transported from cell to cell via plasmodesmata rather than diffusing from their source in the phloem.
Resumo:
Gene silencing was perceived initially as an unpredictable and inconvenient side effect of introducing transgenes into plants. It now seems that it is the consequence of accidentally triggering the plant's adaptive defence mechanism against viruses and transposable elements. This recently discovered mechanism, although mechanistically different, has a number of parallels with the immune system of mammals.
Resumo:
The nucleotide sequences of several animal, plant and bacterial genomes are now known, but the functions of many of the proteins that they are predicted to encode remain unclear. RNA interference is a gene-silencing technology that is being used successfully to investigate gene function in several organisms - for example, Caenorhabditis elegans. We discuss here that RNA-induced gene silencing approaches are also likely to be effective for investigating plant gene function in a high-throughput, genome-wide manner.
Resumo:
In plants, double-stranded RNA (dsRNA) is an effective trigger of RNA silencing, and several classes of endogenous small RNA (sRNA), processed from dsRNA substrates by DICER-like (DCL) endonucleases, are essential in controlling gene expression. One such sRNA class, the microRNAs (miRNAs) control the expression of closely related genes to regulate all aspects of plant development, including the determination of leaf shape, leaf polarity, flowering time, and floral identity. A single miRNA sRNA silencing signal is processed from a long precursor transcript of nonprotein-coding RNA, termed the primary miRNA (pri-miRNA). A region of the pri-miRNA is partially self-complementary allowing the transcript to fold back onto itself to form a stem-loop structure of imperfectly dsRNA. Artificial miRNA (amiRNA) technology uses endogenous pri-miRNAs, in which the miRNA and miRNA*(passenger strand of the miRNA duplex) sequences have been replaced with corresponding amiRNA/ amiRNA*sequences that direct highly efficient RNA silencing of the targeted gene. Here, we describe the rules for amiRNA design, as well as outline the PCR and bacterial cloning procedures involved in the construction of an amiRNA plant expression vector to control target gene expression in Arabidopsis thaliana. © 2014 Springer Science+Business Media New York.
Resumo:
Double-stranded RNA (dsRNA) induces an endogenous sequence-specific RNA degradation mechanism in most eukaryotic cells. The mechanism can be harnessed to silence genes in plants by expressing self-complementary single-stranded (hairpin) RNA in which the duplexed region has the same sequence as part of the target gene's mRNA. We describe a number of plasmid vectors for generating hairpin RNAs, including those designed for high-throughput cloning, and provide protocols for their use.
Resumo:
Motivation: Gene silencing, also called RNA interference, requires reliable assessment of silencer impacts. A critical task is to find matches between silencer oligomers and sites in the genome, in accordance with one-to-many matching rules (G-U matching, with provision for mismatches). Fast search algorithms are required to support silencer impact assessments in procedures for designing effective silencer sequences.Results: The article presents a matching algorithm and data structures specialized for matching searches, including a kernel procedure that addresses a Boolean version of the database task called the skyline search. Besides exact matches, the algorithm is extended to allow for the location-specific mismatches applicable in plants. Computational tests show that the algorithm is significantly faster than suffix-tree alternatives. © The Author 2010. Published by Oxford University Press. All rights reserved.
Resumo:
Recent studies of gene silencing in plants have revealed two RNA-mediated epigenetic processes, RNA-directed RNA degradation and RNA-directed DNA methylation. These natural processes have provided new avenues for developing high-efficiency, high-throughput technology for gene suppression in plants.
Resumo:
Genetic studies are revealing the pathway for RNA-mediated gene silencing. Short RNA molecules are the key, giving sequence specificity for RNA degradation and mediating communication within and between cells; these short RNAs are common to transcriptional and post-transcriptional silencing pathways. The expression of transgenes in plants varies between independent transformants and there are many examples where the transgenic trait is not expressed, or disappears in subsequent generations, despite the presence of the transgene. This loss of a trait, but not of the transgene, has become known as gene silencing and can take two forms, transcriptional or post-transcriptional. As their names imply, transcriptional gene silencing occurs when a transgene is not transcribed, whereas in post-transcriptional gene silencing, the transgene mRNA is produced but degraded before it is translated (reviewed in [1]). Both forms of silencing seem to be the result of inherent mechanisms for protecting plants against mobile or invading DNA — for example, transposable elements or the T-DNA of Agrobacterium — or RNA viruses. Plants are not alone in their capacity for transgene silencing; both forms of silencing occur in flies and fungi, where it is known as RIP or quelling, while nematodes exhibit post-transcriptional silencing, generally referred to as RNA interference (RNAi). A clearer picture of the mechanisms and relationships of the different types of transgene silencing is beginning to emerge from a number of recent studies [2], [3], [4], [5], [6], [7] and [8]. Some of these studies [2], [3], [4] and [5] have enhanced our understanding of the steps within the post-transcriptional silencing pathway, and others [6], [7] and [8] have demonstrated that the two forms of silencing may be mechanistically linked.
Resumo:
It is known that 22-nucleotide (nt) microRNAs (miRNAs) derived from asymmetric duplexes trigger phased small-interfering RNA (phasiRNA) production from complementary targets. Here we investigate the efficacy of 22-nt artificial miRNA (amiRNA)-mediated RNA silencing relative to conventional hairpin RNA (hpRNA) and 21-nt amiRNA-mediated RNA silencing. CHALCONE SYNTHASE (CHS) was selected as a target in Arabidopsis thaliana due to the obvious and non-lethal loss of anthocyanin accumulation upon widespread RNA silencing. Over-expression of CHS in the pap1-D background facilitated visual detection of both local and systemic RNA silencing. RNA silencing was initiated in leaf tissues from hpRNA and amiRNA plant expression vectors under the control of an Arabidopsis RuBisCo small subunit 1A promoter (SSU). In this system, hpRNA expression triggered CHS silencing in most leaf tissues but not in roots or seed coats. Similarly, 21-nt amiRNA expression from symmetric miRNA/miRNA* duplexes triggered CHS silencing in all leaf tissues but not in roots or seed coats. However, 22-nt amiRNA expression from an asymmetric duplex triggered CHS silencing in all tissues, including roots and seed coats, in the majority of plant lines. This widespread CHS silencing required RNA-DEPENDENT RNA POLYMERASE6-mediated accumulation of phasiRNAs from the endogenous CHS transcript. These results demonstrate the efficacy of asymmetric 22-nt amiRNA-directed RNA silencing and associated phasiRNA production and activity, in mediating widespread RNA silencing of an endogenous target gene. Asymmetric 22-nt amiRNA-directed RNA silencing requires little modification of existing amiRNA technology and is expected to be effective in suppressing other genes and/or members of gene families.
Resumo:
In plant cells, DICER-LIKE4 processes perfectly double-stranded RNA (dsRNA) into short interfering (si) RNAs, and DICER-LIKE1 generates micro (mi) RNAs from primary miRNA transcripts (pri-miRNA) that form fold-back structures of imperfectly dsRNA. Both si and miRNAs direct the endogenous endonuclease, ARGONAUTE1 to cleave complementary target single-stranded RNAs and either small RNA (sRNA)-directed pathway can be harnessed to silence genes in plants. A routine way of inducing and directing RNA silencing by siRNAs is to express self-complementary single-stranded hairpin RNA (hpRNA), in which the duplexed region has the same sequence as part of the target gene's mRNA. Artificial miRNA (amiRNA)-mediated silencing uses an endogenous pri-miRNA, in which the original miRNA/miRNA* sequence has been replaced with a sequence complementary to the new target gene. In this chapter, we describe the plasmid vector systems routinely used by our research group for the generation of either hpRNA-derived siRNAs or amiRNAs.