854 resultados para physiological damage


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: The objective of this work was to define procedures to assess the tolerance of cassava genotypes to postharvest physiological deterioration (PPD) and to microbial deterioration (MD). Roots of six cassava genotypes were evaluated in two experiments, during storage under different environmental conditions: high temperature and low soil moisture; or low temperature and high soil moisture. Roots were treated or not with fungicide (carbendazim) before storage. Genotype reactions to MD and PPD were evaluated at 0, 2, 5, 10, 15, 20, and 30 days after harvest (DAH), in the proximal, medial, and distal parts of the roots. A diagrammatic scale was proposed to evaluate nonperipheral symptoms of PPD. Fungicide treatment and root position did not influence PPD expression; however, all factors had significant effect on MD severity. Genotypes differed as to their tolerance to PPD and MD. Both deterioration types were more pronounced during periods of higher humidity and lower temperatures. The fungicide treatment increased root shelf life by reducing MD severity up to 10 DAH. Whole roots showed low MD severity and high PPD expression up to 10 DAH, which enabled the assessment of PPD without significant interference of MD symptoms during this period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract:The objective of this work was to develop a scale to assess the severity of postharvest physiological deterioration (PPD) of cassava roots, and to validate this scale for accuracy and reproducibility estimates. A diagrammatic scale (0 to 100%) for the damaged roots was analyzed according to precision, accuracy, and reproducibility. Seven evaluators (four with experience and three without it) quantified the PPD severity, with or without the scale, considering 150 roots with different levels of PPD. Without and with the use of the scale, respectively, the inexperienced evaluators obtained coefficients of determination (R2) from 0.76 to 0.86 and 0.87 to 0.92, and the experienced evaluators obtained R2 from 0.90 to 0.96 and 0.96 to 0.97. The values of the intercept (a) obtained by both the experienced and inexperienced evaluators who did not use the scale were all significant, while after using the scale, only two evaluators got values that were not significantly different from one. Evaluation reproducibility between the evaluators ranged from 0.61 to 0.91 for the inexperienced ones and from 0.83 to 0.95 for the experienced ones. The proposed diagrammatic scale was considered appropriate to estimate the severity of PPD in cassava roots, and can be used to identify sources of tolerance to postharvest deterioration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hearing loss can be caused by a variety of insults, including acoustic trauma and exposure to ototoxins, that principally effect the viability of sensory hair cells via the MAP kinase (MAPK) cell death signaling pathway that incorporates c-Jun N-terminal kinase (JNK). We evaluated the otoprotective efficacy of D-JNKI-1, a cell permeable peptide that blocks the MAPK-JNK signal pathway. The experimental studies included organ cultures of neonatal mouse cochlea exposed to an ototoxic drug and cochleae of adult guinea pigs that were exposed to either an ototoxic drug or acoustic trauma. Results obtained from the organ of Corti explants demonstrated that the MAPK-JNK signal pathway is associated with injury and that blocking of this signal pathway prevented apoptosis in areas of aminoglycoside damage. Treatment of the neomycin-exposed organ of Corti explants with D-JNKI-1 completely prevented hair cell death initiated by this ototoxin. Results from in vivo studies showed that direct application of D-JNKI-1 into the scala tympani of the guinea pig cochlea prevented nearly all hair cell death and permanent hearing loss induced by neomycin ototoxicity. Local delivery of D-JNKI-1 also prevented acoustic trauma-induced permanent hearing loss in a dose-dependent manner. These results indicate that the MAPK-JNK signal pathway is involved in both ototoxicity and acoustic trauma-induced hair cell loss and permanent hearing loss. Blocking this signal pathway with D-JNKI-1 is of potential therapeutic value for long-term protection of both the morphological integrity and physiological function of the organ of Corti during times of oxidative stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Lactate protects mice against the ischaemic damage resulting from transient middle cerebral artery occlusion (MCAO) when administered intracerebroventricularly at reperfusion, yielding smaller lesion sizes and a better neurological outcome 48 h after ischaemia. We have now tested whether the beneficial effect of lactate is long-lasting and if lactate can be administered intravenously. METHODS: Male ICR-CD1 mice were subjected to 15-min suture MCAO under xylazine + ketamine anaesthesia. Na L-lactate (2 µl of 100 mmol/l) or vehicle was administered intracerebroventricularly at reperfusion. The neurological deficit was evaluated using a composite deficit score based on the neurological score, the rotarod test and the beam walking test. Mice were sacrificed at 14 days. In a second set of experiments, Na L-lactate (1 µmol/g body weight) was administered intravenously into the tail vein at reperfusion. The neurological deficit and the lesion volume were measured at 48 h. RESULTS: Intracerebroventricularly injected lactate induced sustained neuroprotection shown by smaller neurological deficits at 7 days (median = 0, min = 0, max = 3, n = 7 vs. median = 2, min = 1, max = 4.5, n = 5, p < 0.05) and 14 days after ischaemia (median = 0, min = 0, max = 3, n = 7 vs. median = 3, min = 0.5, max = 3, n = 7, p = 0.05). Reduced tissue damage was demonstrated by attenuated hemispheric atrophy at 14 days (1.3 ± 4.0 mm(3), n = 7 vs. 12.1 ± 3.8 mm(3), n = 5, p < 0.05) in lactate-treated animals. Systemic intravenous lactate administration was also neuroprotective and attenuated the deficit (median = 1, min = 0, max = 2.5, n = 12) compared to vehicle treatment (median = 1.5, min = 1, max = 8, n = 12, p < 0.05) as well as the lesion volume at 48 h (13.7 ± 12.2 mm(3), n = 12 vs. 29.6 ± 25.4 mm(3), n = 12, p < 0.05). CONCLUSIONS: The beneficial effect of lactate is long-lasting: lactate protects the mouse brain against ischaemic damage when supplied intracerebroventricularly during reperfusion with behavioural and histological benefits persisting 2 weeks after ischaemia. Importantly, lactate also protects after systemic intravenous administration, a more suitable route of administration in a clinical emergency setting. These findings provide further steps to bring this physiological, commonly available and inexpensive neuroprotectant closer to clinical translation for stroke.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The shift from solitary to social organisms constitutes one of the major transitions in evolution. The highest level of sociality is found in social insects (ants, termites and some species of bees and wasps). Division of labor is central to the organization of insect societies and is thought to be at the root of their ecological success. There are two main levels of division of labor in social insect colonies. The first relates to reproduction and involves the coexistence of queen and worker castes: while reproduction is usually monopolized by one or several queens, functionally sterile workers perform all the tasks to maintain the colony, such as nest building, foraging or brood care. The second level of division of labor, relating to such non-reproductive duties, is characterized by the performance of different tasks or roles by different groups of workers. This PhD aims to better understand the mechanisms underlying division of labor in insect societies, by investigating how genes and physiology influence caste determination and worker behavior in ants. In the first axis of this PhD, we studied the nature of genetic effects on division of labor. We used the Argentine ant Linepithema humile to conduct controlled crosses in the laboratory, which revealed the existence of non-additive genetic effects, such as parent-of-origin and genetic compatibility effects, on caste determination and worker behavior. In the second axis, we focused on the physiological regulation of division of labor. Using Pogonomyrmex seed- harvester ants, we performed experimental manipulation of hibernation, hormonal treatments, gene expression analyses and protein quantification to identify the physiological pathways regulating maternal effects on caste determination. Finally, comparing gene expression between nurses and foragers allowed us to reveal the association between vitellogenin and worker behavior in Pogonomyrmex ants. This PhD provides important insights into the role of genes and physiology in the regulation of division of labor in social insect colonies, helping to better understand the organization, evolution and ecological success of insect societies. - L'une des principales transitions évolutives est le passage de la vie solitaire à la vie sociale. La socialité atteint son paroxysme chez les insectes sociaux que sont les fourmis, les termites et certaines espèces d'abeilles et de guêpes. La division du travail est la clé de voûte de l'organisation de ces sociétés d'insectes et la raison principale de leur succès écologique. La division du travail s'effectue à deux niveaux dans les colonies d'insectes sociaux. Le premier niveau concerne la reproduction et implique la coexistence de deux castes : les reines et les ouvrières. Tandis que la reproduction est le plus souvent monopolisée par une ou plusieurs reines, les ouvrières stériles effectuent les tâches nécessaires au bon fonctionnement de la colonie, telles que la construction du nid, la recherche de nourriture ou le soin au couvain. Le second niveau de division du travail, qui concerne les tâches autres que la reproduction, implique la réalisation de différents travaux par différents groupes d'ouvrières. Le but de ce doctorat est de mieux comprendre les mécanismes sous-jacents de la division du travail dans les sociétés d'insectes en étudiant comment les gènes et la physiologie influencent la détermination de la caste et le comportement des ouvrières chez les fourmis. Dans le premier axe de ce doctorat, nous avons étudié la nature des influences génétiques sur la division du travail. Nous avons utilisé la fourmi d'Argentine, Linepithema humile, pour effectuer des croisements contrôlés en laboratoire. Cette méthode nous a permis de révéler l'existence d'influences génétiques non additives, telles que des influences dépendantes de l'origine parentale ou des effets de compatibilité génétique, sur la détermination de la caste et le comportement des ouvrières. Dans le second axe, nous nous sommes intéressés à la régulation physiologique de la division du travail. Nous avons utilisé des fourmis moissonneuses du genre Pogonomyrmex pour effectuer des hibernations artificieHes, des traitements hormonaux, des analyses d'expression de gènes et des mesures de vitellogénine, ce qui nous a permis d'identifier les mécanismes physiologiques régulant les effets maternels sur la détermination de la caste. Enfin, la comparaison d'expression de gènes entre nourrices et fourrageuses suggère un rôle de la vitellogénine dans la régulation du comportement des ouvrières chez les fourmis moissonneuses. En détaillant les influences des gènes et de la physiologie dans la régulation de la division du travail dans les colonies d'insectes sociaux, ce doctorat fournit d'importantes informations permettant de mieux comprendre l'organisation, l'évolution et le succès écologique des sociétés d'insectes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The avocado fruit borer, Stenoma catenifer (Wals.) has been a limiting factor in growing avocados over the last years in many Brazilian states. This is a result of the lack of safe and feasible management practices to minimize the fruit borer damage. The aim of this study was to obtain information on the pest biology and ecology as well as on the role of natural enemies to define strategies to control the pest. Samples were taken biweekly and consisted of 20 fruits collected randomly (10 from the upper half and 10 from the lower half of the plant) in ten plants, cv. Margarida, in a commercial avocado grove in Arapongas and Cambé regions, PR, from October/2001 to September/2002. Laboratory determinations of the percentage of damaged fruit per plant region, location and number of bored fruit sites, and the number and location of the fruit borer eggs, including parasitized ones, were performed. The results showed that S. catenifer preferred to oviposit and attack fruits located on the upper half of the trees. The majority of the eggs were laid on the fruit pedicel whereas the damage was mainly located on the lower half of the fruits. Trichogrammatids were the most constant and abundant parasitoids found in both localities throughout the study period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résume Les caspases sont un groupe de protéases à cystéine qui s?activent lors de l'apoptose. Leur activation induit le clivage de nombreuses cibles intracellulaires, conduisant à l'activation de voies pro-apoptotiques et finalement au démantèlement des cellules. Cependant, des caspases ont été décrites dans de nombreux autres processus indépendants de l'apoptose, notamment dans la physiologie des cellules hématopoïétiques, des cellules musculaires, des cellules de la peau et des neurones. Comment est-ce que les cellules réconcilient-elles ces deux fonctions distinctes? Une partie de la réponse réside dans la nature des substrats qu'elles clivent. Certains substrats, une fois clivées, deviennent anti-apoptotiques. RasGAP est une cible des caspases et contient deux sites spécifiques de clivage par les caspases. Lorsque le niveau d?activité des caspases est faible le clivage de RasGAP produit un fragment N-terminal qui active un signal antiapoptotique, relayé par la voie de Ras/PI3K/Akt. Lorsque le niveau d?activité des caspases est plus élevé le fragment RasGAP N-terminal est à nouveau clivé, perdant de ce fait ses propriétés anti-apoptotiques. Dans cette étude, nous avons mis en évidence que l'activation de la voie Ras/PI3K/Akt induite par le fragment RasGAP N-terminal dépend de RasGAP lui-même. Par ailleurs, dans le but d?étudier l?importance du clivage de RasGAP dans un contexte physiologique, nous avons développé un modèle animal exprimant une gêne mutée de RasGAP de sorte que la protéine est devenu insensible a l?action de caspases. Les données préliminaires obtenues montrent que le clivage de RasGAP n'est pas indispensable pour le développement et l?homéostasie chez la souris. Finalement, nous avons développé une souris transgénique surexprimant le fragment de RasGAP N-terminal dans les cellules ß du pancréas. Les animaux obtenus ne montrent pas de symptômes dans les conditions basales bien qu?ils soient plus résistants au diabète induit expérimentalement. Ces résultats montrent que la surexpression du fragment N-terminal de RasGAP protége efficacement les cellules ß du pancréas de l?apoptose induite par le stress sans pourtant affecter d?autres paramètres physiologiques des Ilot de Langerhans.<br/><br/>Caspases are a series of proteases that are activated during apoptosis. Their activation causes the cleavage of numerous intracellular targets, which leads to cell dismantling and activation of pro-apoptotic pathways. Caspases have been found to be involved in the physiology of numerous cell types including haematopoietic cells, muscle cells, skin cells and neurons. How cells conciliate these two opposite functions? Part of the answer lies in the nature of the substrates they cleave. Some substrates become anti-apoptotic once cleaved by caspases. RasGAP is a caspase substrate that possesses two conserved caspase-cleavage sites. At low caspase activity, RasGAP is first cleaved and the generated N-terminal fragment activates a potent anti-apoptotic signal, mediated by the Ras/PI3K/Akt pathway. At higher caspase activity, the N-terminal fragment is further cleaved thereby losing its anti-apoptotic properties. In the present study we show that the activation of the Ras/PI3K/Akt pathway mediated by RasGAP N-terminal fragment is dependent on RasGAP itself. Moreover, to study the role of RasGAP cleavage in a physiological model, we have developed a knock-in mouse model expressing a RasGAP mutant that is not cleavable by caspases. Preliminary data shows that RasGAP cleavage is not required for normal development and homeostasis in mice. Finally, we have developed a transgenic mouse model overexpressing RasGAP N-terminal fragment in the ß-cell of the pancreas. In basal conditions, these mice show no difference with their wt counterparts. However, they are protected against experimentally induced diabetes. These results indicate that fragment N can protect ? cells from stress-induced apoptosis without affecting other physiological parameters of the Islets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The future of high technology welded constructions will be characterised by higher strength materials and improved weld quality with respect to fatigue resistance. The expected implementation of high quality high strength steel welds will require that more attention be given to the issues of crack initiation and mechanical mismatching. Experiments and finite element analyses were performed within the framework of continuum damage mechanics to investigate the effect of mismatching of welded joints on void nucleation and coalescence during monotonic loading. It was found that the damage of undermatched joints mainly occurred in the sandwich layer and the damageresistance of the joints decreases with the decrease of the sandwich layer width. The damage of over-matched joints mainly occurred in the base metal adjacent to the sandwich layer and the damage resistance of the joints increases with thedecrease of the sandwich layer width. The mechanisms of the initiation of the micro voids/cracks were found to be cracking of the inclusions or the embrittled second phase, and the debonding of the inclusions from the matrix. Experimental fatigue crack growth rate testing showed that the fatigue life of under-matched central crack panel specimens is longer than that of over-matched and even-matched specimens. Further investigation by the elastic-plastic finite element analysis indicated that fatigue crack closure, which originated from the inhomogeneousyielding adjacent to the crack tip, played an important role in the fatigue crack propagation. The applicability of the J integral concept to the mismatched specimens with crack extension under cyclic loading was assessed. The concept of fatigue class used by the International Institute of Welding was introduced in the parametric numerical analysis of several welded joints. The effect of weld geometry and load condition on fatigue strength of ferrite-pearlite steel joints was systematically evaluated based on linear elastic fracture mechanics. Joint types included lap joints, angle joints and butt joints. Various combinations of the tensile and bending loads were considered during the evaluation with the emphasis focused on the existence of both root and toe cracks. For a lap joint with asmall lack-of-penetration, a reasonably large weld leg and smaller flank angle were recommended for engineering practice in order to achieve higher fatigue strength. It was found that the fatigue strength of the angle joint depended strongly on the location and orientation of the preexisting crack-like welding defects, even if the joint was welded with full penetration. It is commonly believed that the double sided butt welds can have significantly higher fatigue strength than that of a single sided welds, but fatigue crack initiation and propagation can originate from the weld root if the welding procedure results in a partial penetration. It is clearly shown that the fatigue strength of the butt joint could be improved remarkably by ensuring full penetration. Nevertheless, increasing the fatigue strength of a butt joint by increasing the size of the weld is an uneconomical alternative.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Understanding the relationship between gene expression changes, enzyme activity shifts, and the corresponding physiological adaptive response of organisms to environmental cues is crucial in explaining how cells cope with stress. For example, adaptation of yeast to heat shock involves a characteristic profile of changes to the expression levels of genes coding for enzymes of the glycolytic pathway and some of its branches. The experimental determination of changes in gene expression profiles provides a descriptive picture of the adaptive response to stress. However, it does not explain why a particular profile is selected for any given response. Results: We used mathematical models and analysis of in silico gene expression profiles (GEPs) to understand how changes in gene expression correlate to an efficient response of yeast cells to heat shock. An exhaustive set of GEPs, matched with the corresponding set of enzyme activities, was simulated and analyzed. The effectiveness of each profile in the response to heat shock was evaluated according to relevant physiological and functional criteria. The small subset of GEPs that lead to effective physiological responses after heat shock was identified as the result of the tuning of several evolutionary criteria. The experimentally observed transcriptional changes in response to heat shock belong to this set and can be explained by quantitative design principles at the physiological level that ultimately constrain changes in gene expression. Conclusion: Our theoretical approach suggests a method for understanding the combined effect of changes in the expression of multiple genes on the activity of metabolic pathways, and consequently on the adaptation of cellular metabolism to heat shock. This method identifies quantitative design principles that facilitate understating the response of the cell to stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Wine Saccharomyces cerevisiae strains, adapted to anaerobic must fermentations, suffer oxidative stress when they are grown under aerobic conditions for biomass propagation in the industrial process of active dry yeast production. Oxidative metabolism of sugars favors high biomass yields but also causes increased oxidation damage of cell components. The overexpression of the TRX2 gene, coding for a thioredoxin, enhances oxidative stress resistance in a wine yeast strain model. The thioredoxin and also the glutathione/glutaredoxin system constitute the most important defense against oxidation. Trx2p is also involved in the regulation of Yap1p-driven transcriptional response against some reactive oxygen species. Results: Laboratory scale simulations of the industrial active dry biomass production process demonstrate that TRX2 overexpression increases the wine yeast final biomass yield and also its fermentative capacity both after the batch and fed-batch phases. Microvinifications carried out with the modified strain show a fast start phenotype derived from its enhanced fermentative capacity and also increased content of beneficial aroma compounds. The modified strain displays an increased transcriptional response of Yap1p regulated genes and other oxidative stress related genes. Activities of antioxidant enzymes like Sod1p, Sod2p and catalase are also enhanced. Consequently, diminished oxidation of lipids and proteins is observed in the modified strain, which can explain the improved performance of the thioredoxin overexpressing strain. Conclusions: We report several beneficial effects of overexpressing the thioredoxin gene TRX2 in a wine yeast strain. We show that this strain presents an enhanced redox defense. Increased yield of biomass production process in TRX2 overexpressing strain can be of special interest for several industrial applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondrial dysfunction, caspase activation and caspase-dependent DNA fragmentation are involved in cell damage in many tissues. However, differentiated cardiomyocytes repress the expression of the canonical apoptotic pathway and their death during ischemia is caspase-independent. The atypical BH3-only protein Bnip3 is involved in the process leading to caspase-independent DNA fragmentation in cardiomyocytes. However, the pathway by which DNA degradation ensues following Bnip3 activation is not resolved. To identify the mechanism involved, we analyzed the interdependence of Bnip3, Nix and EndoG in mitochondrial damage and DNA fragmentation during experimental ischemia in neonatal rat ventricular cardiomyocytes. Our results show that the expression of EndoG and Bnip3 increases in the heart throughout development, while the caspase-dependent machinery is silenced. TUNEL-positive DNA damage, which depends on caspase activity in other cells, is caspase-independent in ischemic cardiomyocytes and ischemia-induced DNA high and low molecular weight fragmentation is blocked by repressing EndoG expression. Ischemia-induced EndoG translocation and DNA degradation are prevented by silencing the expression of Bnip3, but not Nix, or by overexpressing Bcl-xL. These data establish a link between Bnip3 and EndoG-dependent, TUNEL-positive, DNA fragmentation in ischemic cardiomyocytes in the absence of caspases, defining an alternative cell death pathway in postmitotic cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signal transduction systems mediate the response and adaptation of organisms to environmental changes. In prokaryotes, this signal transduction is often done through Two Component Systems (TCS). These TCS are phosphotransfer protein cascades, and in their prototypical form they are composed by a kinase that senses the environmental signals (SK) and by a response regulator (RR) that regulates the cellular response. This basic motif can be modified by the addition of a third protein that interacts either with the SK or the RR in a way that could change the dynamic response of the TCS module. In this work we aim at understanding the effect of such an additional protein (which we call ‘‘third component’’) on the functional properties of a prototypical TCS. To do so we build mathematical models of TCS with alternative designs for their interaction with that third component. These mathematical models are analyzed in order to identify the differences in dynamic behavior inherent to each design, with respect to functionally relevant properties such as sensitivity to changes in either the parameter values or the molecular concentrations, temporal responsiveness, possibility of multiple steady states, or stochastic fluctuations in the system. The differences are then correlated to the physiological requirements that impinge on the functioning of the TCS. This analysis sheds light on both, the dynamic behavior of synthetically designed TCS, and the conditions under which natural selection might favor each of the designs. We find that a third component that modulates SK activity increases the parameter space where a bistable response of the TCS module to signals is possible, if SK is monofunctional, but decreases it when the SK is bifunctional. The presence of a third component that modulates RR activity decreases the parameter space where a bistable response of the TCS module to signals is possible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glutaredoxins are members of a superfamily of thiol disulfide oxidoreductases involved in maintaining the redox state of target proteins. In Saccharomyces cerevisiae, two glutaredoxins (Grx1 and Grx2) containing a cysteine pair at the active site had been characterized as protecting yeast cells against oxidative damage. In this work, another subfamily of yeast glutaredoxins (Grx3, Grx4, and Grx5) that differs from the first in containing a single cysteine residue at the putative active site is described. This trait is also characteristic for a number of glutaredoxins from bacteria to humans, with which the Grx3/4/5 group has extensive homology over two regions. Mutants lacking Grx5 are partially deficient in growth in rich and minimal media and also highly sensitive to oxidative damage caused by menadione and hydrogen peroxide. A significant increase in total protein carbonyl content is constitutively observed in grx5cells, and a number of specific proteins, including transketolase, appear to be highly oxidized in this mutant. The synthetic lethality of the grx5 and grx2 mutations on one hand and ofgrx5 with the grx3 grx4 combination on the other points to a complex functional relationship among yeast glutaredoxins, with Grx5 playing a specially important role in protection against oxidative stress both during ordinary growth conditions and after externally induced damage. Grx5-deficient mutants are also sensitive to osmotic stress, which indicates a relationship between the two types of stress in yeast cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myocardial ischaemia-reperfusion (MIR) triggers a sterile inflammatory response important for myocardial healing, but which may also contribute to adverse ventricular remodelling. Such inflammation is initiated by molecular danger signals released by damaged myocardium, which induce innate immune responses by activating toll-like receptors (TLRs). Detrimental roles have been recently reported for TLR2, TLR3 and TLR4. The role of other TLRs is unknown. We therefore evaluated the role of TLR5, expressed at high level in the heart, in the development of myocardial damage and inflammation acutely triggered by MIR. TLR5-/- and wild-type (WT) mice were exposed to MIR (30 min ischaemia, 2 h reperfusion). We measured infarct size, markers of cardiac oxidative stress, myocardial phosphorylation state of mitogen-activated protein (MAP) kinases and AKT, expression levels of chemokines and cytokines in the heart and plasma, as well as cardiac function by echography and conductance volumetry. TLR5-deficient mice had normal cardiac morphology and function under physiological conditions. After MIR, the absence of TLR5 promoted an increase in infarct size and myocardial oxidative stress. Lack of TLR5 fostered p38 phosphorylation, reduced AKT phosphorylation and markedly increased the expression of inflammatory cytokines, whereas it precipitated acute LV (left ventricle) dysfunction. Therefore, contrary to the detrimental roles of TLR2, TLR3 and TLR4 in the infarcted heart, TLR5 is important to limit myocardial damage, inflammation and functional compromise after MIR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article aims at evaluating the effects of different packaging and varied storage temperatures on the germination potential of seeds of Campomanesia adamantium Camb. O. Berg. The seeds were packaged in glass, aluminum foil and plastic containers, or maintained inside intact fruits at 5, 10 and 15 ºC during 0, 7, 14 and 21 days. After these periods the seeds were sown in Germitest® germination paper and maintained in incubation chambers at 25 ºC under constant white light for 42 days. Seed moisture contents were evaluated both before and after storage, as well as germination percentages, germination speed index, root and aerial portion of seedlings lengths, and total dry weights. All possible combinations of packing materials, temperatures and storage times were tested, with four repetitions of 25 seeds for each treatment. C. adamantium seeds showed initial water contents of 31.5%. Glass and aluminum packaging were efficient at maintaining the water content of the seeds, and provided greater germination speed index than the other packaging materials. Germination percentages, seedlings lengths and dry weights did not vary among the different temperatures tested. C. adamantium seeds can be stored for up to 21 days at temperatures between 5 and 15 ºC without altering their physiological quality. In terms of cost-benefit efficiencies, these seeds can be stored without significant damage for 21 days while still inside the fruits at temperatures of 5, 10 or 15 ºC.