849 resultados para physical therapy


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new ternary iron(III) complex [FeL(dpq)] containing dipyridoquinoxaline (dpq) and 2,2-bis(3,5-di-tert-butyl-2-hydroxybenzyl)aminoacetic acid (H3L) is prepared and structurally characterized by X-ray crystallography. The high-spin complex with a FeN3O3 core shows a quasi-reversible iron(III)/iron(II) redox couple at -0.62 V (vs SCE) in DMF/0.1 M TBAP and a broad visible band at 470 nm in DMF/Tris buffer. Laser photoexcitation of this phenolate (L)-to-iron(III) charge-transfer band at visible wavelengths including red light of >= 630 nm leads to cleavage of supercoiled pUC19 DNA to its nicked circular form via a photoredox pathway forming hydroxyl radicals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lipoplexes formed by the pEGFP-C3 plasmid DNA (pDNA) and lipid mixtures containing cationic gemini surfactant of the 1,2-bis(hexadecyl dimethyl ammonium) Acmes family referred to as C16CnC16, where n = 2 3, 5, or 12, and the zwitterionic helper lipid, 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) have been studied from a wide variety of physical, chemical, and biological standpoints. The study has been carried out using several experimental methods, such as zeta potential, gel electrophoresis, small-angle X-ray scattering (SAXS), cryo-TEM, gene transfection, cell viability/cytotoxicity, and confocal fluorescence microscopy. As reported recently in a communication (J. Am. Chem. Soc. 2011, 133, 18014), the detailed physicochemical and biological studies confirm that, in the presence of the studied series lipid mixtures, plasmid DNA is compacted with a large number of its associated Na+ counterions. This in turn yields a much lower effective negative charge, q(pDNA)(-), a value that has been experimentally obtained for each mixed lipid mixture. Consequently, the cationic lipid (CL) complexes prepared with pDNA and CL/DOPE mixtures to be used in gene transfection require significantly less amount of CL than the one estimated assuming a value of q(DNA)(-) = -2. This drives to a considerably lower cytotoxicity of the gene vector. Depending on the CL molar composition, alpha, of the lipid mixture, and the effective charge ratio of the lipoplex, rho(eff), the reported SAXS data indicate the presence of two or three structures in the same lipoplex, one in the DOPE-rich region, other in the CL-rich region, and another one present at any CL composition. Cryo-TEM and SAXS studies with C16CnC16/DOPE-pDNA lipoplexes indicate that pDNA is localized between the mixed lipid bilayers of lamellar structures within a monolayer of similar to 2 nm. This is consistent with a highly compacted supercoiled pDNA conformation compared with that of linear DNA. Transfection studies were carried out with HEK293T, HeLa, CHO, U343, and H460 cells. The alpha and rho(eff) values for each lipid mixture were optimized on HEK293T cells for transfection, and using these values, the remaining cells were also transfected in absence (-FBS-FBS) and presence (-FBS+FBS) of serum. The transfection efficiency was higher with the CLs of shorter gemini spacers (n = 2 or 3). Each formulation expressed GFP on pDNA transfection and confocal fluorescence microscopy corroborated the results. C16C2C16/DOPE mixtures were the most efficient toward transfection among all the lipid mixtures and, in presence of serum, even better than the Lipofectamine2000, a commercial transfecting agent Each lipid combination was safe and did not show any significant levels of toxicity. Probably, the presence of two coexisting lamellar structures in lipoplexes synergizes the transfection efficiency of the lipid mixtures which are plentiful in the lipoplexes formed by CLs with short spacer (n = 2, 3) than those with the long spacer (n = 5, 12).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using a realistic nonlinear mathematical model for melanoma dynamics and the technique of optimal dynamic inversion (exact feedback linearization with static optimization), a multimodal automatic drug dosage strategy is proposed in this paper for complete regression of melanoma cancer in humans. The proposed strategy computes different drug dosages and gives a nonlinear state feedback solution for driving the number of cancer cells to zero. However, it is observed that when tumor is regressed to certain value, then there is no need of external drug dosages as immune system and other therapeutic states are able to regress tumor at a sufficiently fast rate which is more than exponential rate. As model has three different drug dosages, after applying dynamic inversion philosophy, drug dosages can be selected in optimized manner without crossing their toxicity limits. The combination of drug dosages is decided by appropriately selecting the control design parameter values based on physical constraints. The process is automated for all possible combinations of the chemotherapy and immunotherapy drug dosages with preferential emphasis of having maximum possible variety of drug inputs at any given point of time. Simulation study with a standard patient model shows that tumor cells are regressed from 2 x 107 to order of 105 cells because of external drug dosages in 36.93 days. After this no external drug dosages are required as immune system and other therapeutic states are able to regress tumor at greater than exponential rate and hence, tumor goes to zero (less than 0.01) in 48.77 days and healthy immune system of the patient is restored. Study with different chemotherapy drug resistance value is also carried out. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although DNA interstrand crosslinking (ICL) agents such as mitomycin C, cisplatin and psoralen serve as potent anticancer drugs, these agents are known to have dose-limiting toxic effects on normal cells. Moreover, tumor resistance to these agents has been reported. Here, we show that trans-dichlorooxovanadium (IV) complex of pyrenyl terpyridine (VDC) is a novel photoinducible DNA crosslinking agent. By a combination of in vitro and ex vivo experiments including plasmid-based assays, we find that VDC forms monoadducts on the DNA and can be activated by UV-A and visible light to generate DNA interstrand crosslinks. VDC efficiently activates Fanconi anemia (FA) pathway of DNA interstrand crosslink repair. Strikingly, photoinduction of VDC induces prolonged activation of cell cycle checkpoint and a high degree of cell death in homologous recombination (HR)/ICL repair defective cells. Moreover, VDC specifically targets cells that express pathological RAD51C mutants. These data imply that VDC can be potentially used for cancer therapy and suggest that tumors arising in patients with gene mutations in FA and HR repair pathway can be specifically targeted by a photoactivatable VDC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a small lake, intermittent destratification was installed after several other physico-chemical and physical in-lake therapy measures (phosphorus immobilization, permanent destratification) had been tested without great success. If an aerobic sediment-water interface can be maintained, intermittent destratification removes cyanobacteria and prevents optimal development of other members of the photoautotrophic plankton. During growing seasons, increasing abundances of small-bodied herbivores (Bosmina) and Daphnia may have accounted for relatively low phytoplankton biomass as well. Intermittent destratification is a very fast-working in-lake measure and seems to be applicable even in relatively shallow lakes (< 15 m), in which permanent destratification seems to be risky.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Aerosol delivery holds potential to release surfactant or perfluorocarbon (PFC) to the lungs of neonates with respiratory distress syndrome with minimal airway manipulation. Nevertheless, lung deposition in neonates tends to be very low due to extremely low lung volumes, narrow airways and high respiratory rates. In the present study, the feasibility of enhancing lung deposition by intracorporeal delivery of aerosols was investigated using a physical model of neonatal conducting airways. Methods: The main characteristics of the surfactant and PFC aerosols produced by a nebulization system, including the distal air pressure and air flow rate, liquid flow rate and mass median aerodynamic diameter (MMAD), were measured at different driving pressures (4-7 bar). Then, a three-dimensional model of the upper conducting airways of a neonate was manufactured by rapid prototyping and a deposition study was conducted. Results: The nebulization system produced relatively large amounts of aerosol ranging between 0.3 +/- 0.0 ml/min for surfactant at a driving pressure of 4 bar, and 2.0 +/- 0.1 ml/min for distilled water (H(2)Od) at 6 bar, with MMADs between 2.61 +/- 0.1 mu m for PFD at 7 bar and 10.18 +/- 0.4 mu m for FC-75 at 6 bar. The deposition study showed that for surfactant and H(2)Od aerosols, the highest percentage of the aerosolized mass (similar to 65%) was collected beyond the third generation of branching in the airway model. The use of this delivery system in combination with continuous positive airway pressure set at 5 cmH(2)O only increased total airway pressure by 1.59 cmH(2)O at the highest driving pressure (7 bar). Conclusion: This aerosol generating system has the potential to deliver relatively large amounts of surfactant and PFC beyond the third generation of branching in a neonatal airway model with minimal alteration of pre-set respiratory support.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Treatment planning of heavy-ion radiotherapy involves predictive calculation of not only the physical dose but also the biological dose in a patient body. The goal in designing beam-modulating devices for heavy ion therapy is to achieve uniform biological effects across the spread-out Bragg peak (SOBP). To achieve this, a mathematical model of Bragg peak movement is presented. The parameters of this model have been resolved with Monte Carlo method. And a rotating wheel filter is designed basing on the velocity of the Bragg peak movement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Basic research related to heavy-ion cancer therapy has been done at the Institute of Modern Physics (IMP), Chinese Academy of Sciences since 1995. Now a plan of clinical trial with heavy ions has been launched at IMP. First, superficially placed tumor treatment with heavy ions is expected in the therapy terminal at the Heavy Ion Research Facility in Lanzhou (HIRFL), where carbon ion beams with energy up to 100 MeV/u can be supplied. The shallow-seated tumor therapy terminal at HIRFL is equipped with a passive beam delivery system including two orthogonal dipole magnets, which continuously scan pencil beams laterally and generate a broad and uniform irradiation field, a motor-driven energy degrader and a multi-leaf collimator. Two different types of range modulator, ripple filter and ridge filter with which Guassian-shaped physical dose and uniform biological effective dose Bragg peaks can be shaped for therapeutic ion beams respectively, have been designed and manufactured. Therefore, two-dimensional and three-dimensional conformal irradiations to tumors can be performed with the passive beam delivery system at the earlier therapy terminal. Both the conformal irradiation methods have been verified experimentally and carbon-ion conformal irradiations to patients with superficially placed tumors have been carried out at HIRFL since November 2006.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impacts of antiretroviral therapy on quality of life, mental health, labor productivity, and economic wellbeing for people living with HIV/AIDS in developing countries are only beginning to be measured. We conducted a systematic literature review to analyze the effect of antiretroviral therapy (ART) on these non-clinical indicators in developing countries and assess the state of research on these topics. Both qualitative and quantitative studies were included, as were peer-reviewed articles, gray literature, and conference abstracts and presentations. Findings are reported from 12 full-length articles, 7 abstracts, and 1 presentation (representing 16 studies). Compared to HIV-positive patients not yet on treatment, patients on ART reported significant improvements in physical, emotional and mental health and daily function. Work performance improved and absenteeism decreased, with the most dramatic changes occurring in the first three months of treatment and then leveling off. Little research has been done on the impact of ART on household wellbeing, with modest changes in child and family wellbeing within households where adults are receiving ART reported so far. Studies from developing countries have not yet assessed non-clinical outcomes of therapy beyond the first year; therefore, longitudinal outcomes are still unknown. As ART roll out extends throughout high HIV prevalence, low-resource countries and is sustained over years and decades, both positive and adverse non-clinical outcomes need to be empirically measured and qualitatively explored in order to support patient adherence and maximize treatment benefits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Topical photodynamic therapy is used for a variety of malignant and pre-malignant skin disorders, including Bowen's Disease and Superficial Basal Cell Carcinoma. A haem precursor, typically 5-aminolevulinic acid (ALA), acting as a prodrug, is absorbed and converted by the haem biosynthetic pathway to photoactive protoprophyrin IX (PpIX), which accumulates preferentially in rapidly dividing
cells. Cell destruction occurs when PpIx is activated by an intense light source of appropriate wavelength. Topical delivery of ALA avoids the prolonged photosensitivity reactions associated with systemic administration of photosensitisers but its clinical utility is influenced by the tissue penetration characteristics of the drug, its ease of application and the stability of the active agent in the applied dose. This review, therefore, focuses on drug delivery applications for topical, ALA-based PDT. Issues considered in detail include physical and chemical enhancement strategies for tissue penetration of ALA and subsequent intracellular accumulation of PpIX, together with formulation strategies and drug delivery design solutions appropriate to various clinical applications. The fundamental aspects of drug diffusion in
relation to the physicochemical properties of ALA are reviewed and specific consideration is given to the degradation pathways of ALA in formulated systems that, in turn, influence the design of stable topical formulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article uses what Atkinson and Walmsley (1997) refer to as an ‘autobiographical account’ to explore the themes and relationships between narrative, illness experience and therapy in a Myalgic Encephalomyelitis (ME) sufferer. Julie is a chronic ME sufferer, having lived with ME for the past 12 years. Her life-story over those years, as she presents it, casts our attention to the intrinsically personal nature of her ‘illness experience’ and to her distinctively artistic therapeutic responses to her condition. Julie’s autobiographical narrative reveals how ME has penetrated both her body and her sense of self, her limbs as well as her dreams; as though it were a parasite feeding off her fight to regain health. In terms of narrative, Julie’s ME illness progresses from past to present, but never to the future which lies beyond contemplation. Despite this denial of the future, Julie does think of ME as a liminal phase which is to be coped through. As both spatial object and temporal event, Julie conceptualises her ME variously, dealing with it on a day-to-day basis, increasingly turning to landscape painting as a form of escapism which parallels her former physical outward bound activities. This personal therapy, so this article concludes, constitutes both narrative performance and narrative text (as canvas), both of which can only cautiously be independently interpreted by the (inter)viewer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose
Recent in vitro results have shown significant contributions to cell killing from signaling effects at doses that are typically used in radiation therapy. This study investigates whether these in vitro observations can be reconciled with in vivo knowledge and how signaling may have an impact on future developments in radiation therapy.
Methods and Materials
Prostate cancer treatment plans were generated for a series of 10 patients using 3-dimensional conformal therapy, intensity modulated radiation therapy (IMRT), and volumetric modulated arc therapy techniques. These plans were evaluated using mathematical models of survival following modulated radiation exposures that were developed from in vitro observations and incorporate the effects of intercellular signaling. The impact on dose-volume histograms and mean doses were evaluated by converting these survival levels into "signaling-adjusted doses" for comparison.
Results
Inclusion of intercellular communication leads to significant differences between the signalling-adjusted and physical doses across a large volume. Organs in low-dose regions near target volumes see the largest increases, with mean signaling-adjusted bladder doses increasing from 23 to 33 Gy in IMRT plans. By contrast, in high-dose regions, there is a small decrease in signaling-adjusted dose due to reduced contributions from neighboring cells, with planning target volume mean doses falling from 74 to 71 Gy in IMRT. Overall, however, the dose distributions remain broadly similar, and comparisons between the treatment modalities are largely unchanged whether physical or signaling-adjusted dose is compared. Conclusions Although incorporating cellular signaling significantly affects cell killing in low-dose regions and suggests a different interpretation for many phenomena, their effect in high-dose regions for typical planning techniques is comparatively small. This indicates that the significant signaling effects observed in vitro are not contradicted by comparison with clinical observations. Future investigations are needed to validate these effects in vivo and to quantify their ranges and potential impact on more advanced radiation therapy techniques.