989 resultados para particle physics - cosmology connection
Resumo:
The formulation of the carrier-phase momentum and enthalpy source terms in mixed Lagrangian-Eulerian models of particle-laden flows is frequently reported inaccurately. Under certain circumstances, this can lead to erroneous implementations, which violate physical laws. A particle- rather than carrier-based approach is suggested for a consistent treatment of these terms.
Resumo:
Particle concentration is known as a main factor that affects erosion rate of pipe bends in pneumatic conveyors. With consideration of different bend radii, the effect of particle concentration on weight loss of mild steel bends has been investigated in an industrial scale test rig. Experimental results show that there was a significant reduction of the specific erosion rate for high particle concentrations. This reduction was considered to be as a result of the shielding effect during the particle impacts. An empirical model is given. Also a theoretical study of scaling on the shielding effect, and comparisons with some existing models, are presented. It is found that the reduction in specific erosion rate (relative to particle concentration) has a stronger relationship in conveying pipelines than has been found in the erosion tester.
Resumo:
An investigation into predicting failure of pneumatic conveyor pipe bends due to hard solid particle impact erosion has been carried out on an industrial scale test rig. The bend puncture point locations may vary with many factors. However, bend orientation was suspected of being a main factor due to the biased particle distribution pattern of a high concentration flow. In this paper, puncture point locations have been studied with different pipe bend orientations and geometry (a solids loading ratio of 10 being used for the high concentration flow). Test results confirmed that the puncture point location is indeed most significantly influenced by the bend orientation (especially for a high concentration flow) due to the biased particle distribution and biased particle flux distribution.
Resumo:
Most of the experimental and theoretical studies of electron-impact ionization of atoms, referred to as (e, 2e), have concentrated on the scattering plane. The assumption has been that all the important physical effects will be observable in the scattering plane. However, very recently it has been shown that, for C6+-helium ionization, experiment and theory are in nice agreement in the scattering plane and in very bad agreement out of the scattering plane. This lack of agreement between experiment and theory has been explained in terms of higher-order scattering effects between the projectile and target ion. We have examined electron-impact ionization of magnesium and have observed similar higher-order effects. The results of the electron-impact ionization of magnesium indicate the possible deficiencies in the calculation of fully differential cross sections in previous heavy particle ionization work.
Resumo:
The construction of short pulse (
Resumo:
Currents across thin insulators are commonly taken as single electrons moving across classically forbidden regions; this independent particle picture is well-known to describe most tunneling phenomena. Examining quantum transport from a different perspective, i.e., by explicit treatment of electron-electron interactions, we evaluate different single particle approximations with specific application to tunneling in metal-molecule-metal junctions. We find maximizing the overlap of a Slater determinant composed of single-particle states to the many-body current-carrying state is more important than energy minimization for defining single-particle approximations in a system with open boundary conditions. Thus the most suitable single particle effective potential is not one commonly in use by electronic structure methods, such as the Hartree-Fock or Kohn-Sham approximations.
Resumo:
Phase resolved optical emission spectroscopy, with high temporal resolution, shows that wave-particle interactions play a fundamental role in sustaining capacitively coupled rf plasmas. The measurements are in excellent agreement with a simple particle-in-cell simulation. Excitation and ionization mechanisms are dominated by beam-like electrons, energized through the advancing and retreating electric fields of the rf sheath. The associated large-amplitude electron waves, driven by a form of two-stream instability, result in power dissipation through electron trapping and phase mixing. (c) 2007 American Institute of Physics.
Resumo:
Plasma ionization in the low-pressure operation regime ( $«$ 5 Pa) of RF capacitively coupled plasmas (CCPs) is governed by a complex interplay of various mechanisms, such as field reversal, sheath expansion, and wave–particle interactions. In a previous paper, it was shown that experimental observations in a hydrogen CCP operated at 13.56 MHz are qualitatively well described in a 1-D symmetrical particle-in-cell (PIC) simulation. In this paper, a spherical asymmetrical PIC simulation that is closer to the conditions of the highly asymmetrical experimental device is used to simulate a low-pressure neon CCP operated at 2 MHz. The results show a similar behavior, with pronounced ionization through field reversal, sheath expansion, and wave–particle interactions, and can be exploited for more accurate quantitative comparisons with experimental observations.
Resumo:
Two counterpropagating cool and equally dense electron beams are modeled with particle-in-cell simulations. The electron beam filamentation instability is examined in one spatial dimension, which is an approximation for a quasiplanar filament boundary. It is confirmed that the force on the electrons imposed by the electrostatic field, which develops during the nonlinear stage of the instability, oscillates around a mean value that equals the magnetic pressure gradient force. The forces acting on the electrons due to the electrostatic and the magnetic field have a similar strength. The electrostatic field reduces the confining force close to the stable equilibrium of each filament and increases it farther away, limiting the peak density. The confining time-averaged total potential permits an overlap of current filaments with an opposite flow direction.
Resumo:
Aggregated Au colloids have been widely used as SERS enhancing media for many years but to date there has been no systematic investigation of the effect of the particle size on the enhancements given by simple aggregated Au colloid solutions. Previous systematic studies on isolated particles in solution or multiple particles deposited onto surfaces reported widely different optimum particle sizes for the same excitation wavelength and also disagreed on the extent to which surface plasmon absorption spectra were a good predictor of enhancement factors. In this work the spectroscopic properties of a range of samples of monodisperse Au colloids with diameters ranging from 21 to 146 nm have been investigated in solution. The UV/visible absorption spectra of the colloids show complex changes as a function of aggregating salt (MgSO4) concentration which diminish when the colloid is fully aggregated. Under these conditions, the relative SERS enhancements provided by the variously sized colloids vary very significantly across the size range. The largest signals in the raw data are observed for 46 nm colloids but correction for the total surface area available to generate enhancement shows that particles with 74 nm diameter give the largest enhancement per unit surface area. The observed enhancements do not correlate with absorbance at the excitation wavelength but the large differences between differently sized colloids demonstrate that even in the randomly aggregated particle assemblies studied here, inhomogeneous broadening does not mask the underlying changes due to differences in particle diameter.
Resumo:
The properties and characteristics of a recently proposed anisotropic metamaterial based upon layered arrays of tightly coupled pairs of "dogbone" shaped stripe conductors have been explored in detail. It has been found that a metamaterial composed of such stacked layers exhibits artificial magnetism and may support backward wave propagation. The equivalent network models of the constitutive conductor pairs arranged in the periodic array have been devised and applied to the identification of the specific types of resonances, and to the analysis of their contribution into the effective dielectric and magnetic properties of the artificial medium. The proposed "dogbone" configuration of conductor pairs has the advantage of being entirely realizable and assemblable in planar technology. It also appears more prospective than simple cut-wire or metal-plate pairs because the additional geometrical parameters provide an efficient control of separation between the electric and magnetic resonances that, in turn, makes it possible to obtain a fairly broadband left-handed behaviour of the structure at low frequencies.