986 resultados para parasitic nematode
Resumo:
MicroRNAs (miRNAs) play a variety of roles in diverse biological processes at the post-transcriptional regulatory level. Although numerous miRNAs have been identified in parasitic helminths, we still know little about their biological functions. As molecular signatures that can be stably detectable in serum and plasma, worm-derived miRNAs have shown promise as markers for the early detection of particular helminth infections. In addition, host miRNAs are dysregulated during the development of pathology associated with helminthiases and show potential as therapeutic intervention targets. This review discusses the possible biological roles of helminth miRNAs, the prediction of their specific targets, their application in diagnosis and anti-pathology therapy interventions, and the potential functions of miRNAs in extracellular vesicle cargo, such as exosomes, in helminth-host interplay.
Phylum-wide transcriptome analysis of oogenesis and early embryogenesis in selected nematode species
Resumo:
Oogenesis is a prerequisite for embryogenesis in Metazoa. During both biological processes important decisions must be made to form the embryo and hence ensure the next generation: (1) Maternal gene products (mRNAs, proteins and nutrients) must be supplied to the embryo. (2) Polarity must be established and axes must be specified. While incorporation of maternal gene products occurs during oogenesis, the time point of polarity establishment and axis specification varies among species, as it is accomplished either prior, during, or after fertilisation. But not only the time point when these events take place varies among species but also the underlying mechanisms by which they are triggered. For the nematode model Caenorhabditis elegans the underlying pathways and gene regulatory networks (GRNs) are well understood. It is known that there the sperm entry point initiates a primary polarity in the 1-celled egg and with it the establishment of the anteroposterior axis. However, studies of other nematodes demonstrated that polarity establishment can be independent of sperm entry (Goldstein et al., 1998; Lahl et al., 2006) and that cleavage patterns, symmetry formation and cell specification also differ from C. elegans. In contrast to the studied Chromadorea (more derived nematodes including C. elegans), embryos of some marine Enoplea (more basal representatives) even show no discernible early polarity and blastomeres can adopt variable cell fates (Voronov and Panchin 1998). The underlying pathways controlling the obviously variant embryonic processes in non-Caenorhabditis nematodes are essentially unknown. In this thesis I addressed this issue by performing a detailed unbiased comparative transcriptome analysis based on microarrays and RNA sequencing of selected developmental stages in a variety of nematodes from different phylogenetic branches with C. elegans as a reference system and a nematomorph as an outgroup representative. In addition, I made use of available genomic data to determine the presence or absence of genes for which no expression had been detected. In particular, I focussed on components of selected pathways or GRNs which are known to play essential roles during C. elegans development and/or other invertebrate or vertebrate model systems. Oogenesis must be regulated differently in non-Caenorhabditis nematodes, as crucial controlling components of Wnt and sex determination signaling are absent in these species. In this respect, I identified female-specific expression of potential polarity associated genes during gonad development and oogenesis in the Enoplean nematode Romanomermis culicivorax. I could show that known downstream components of the polarity complexes PAR-3/-6/PKC-3 and PAR-1/-2 are absent in non-Caenorhabditis species. Even PAR-2 as part of the polarity complex does not exist in these nematodes. Instead, transcriptomes of nematodes (including C. elegans), show expression of other polarity-associated complexes such as the Lgl (Lethal giant larvae) complex. This result could pose an alternative route for nematodes and nematomorphs to initiate polarity during early embryogenesis. I could show that crucial pathways of axis specification, such as Wnt and BMP are very different in C. elegans compared to other nematodes. In the former, Wnt signaling, for instance, is mediated by four paralogous beta-catenins, while other Chromadorea have fewer and Enoplea only one beta-catenin. The transcriptomes of R. culicivorax and the nematomorph show that regulators of BMP (e.g. Chordin), are specifically expressed during early embryogenesis only in Enoplea and the close outgroup of nematomorphs. In conclusion, my results demonstrate that the molecular machinery controlling oogenesis and embryogenesis in nematodes is unexpectedly variable and C. elegans cannot be taken as a general model for nematode development. Under this perspective, Enoplean nematodes show more similarities with outgroups than with C. elegans. It appears that certain pathway components were lost or gained during evolution and others adopted new functions. Based on my findings I can conjecture, which pathway components may be ancestral and which were newly acquired in the course of nematode evolution.
Resumo:
Pathogenesis, classification and treatment of non-parasitic splenic cysts (NPSCs) are controversial. The utility of percutaneous aspiration of the cyst is not well understood. We report a case of a 32 year-old woman with a symptomatic giant epidermoid cyst of the spleen treated with laparoscopic splenectomy. A percutaneous transcatheter drainage was performed under ultrasound guidance before surgical procedure in order to classify the type of cyst and to choose the best treatment.
Resumo:
Heterodera glycines, the soybean cyst nematode, is the major pathogen of Glycine max (soybean). Effective management of this pathogen is contingent on the use of resistant cultivars, thus screening for resistant cultivars is essential. The purpose of this research was to develop a method to assess infection of soybean roots by H. glycines with real-time quantitative Polymerase Chain Reaction (qPCR), a prelude to differentiation of resistance levels in soybean cultivars. Two experiments were conducted. In the first one, a consistent inoculation method was developed using to provide active second-stage juveniles (J2). Two-day-old soybean roots were infested with 0 and 1000 J2/mL. Twenty-four hours after infestation, the roots were surface sterilized and DNA was extracted with the DNA FastKit (MP Biomedicals, Santa Ana, CA)). For the qPCR assay, primer pair for single copy gene HgSNO, which codes for a protein involved in the production of vitamin B6, was selected for H. glycines DNA amplification within soybean roots. In the second experiment, compatible Lee 74, incompatible Peking and cultivars with different levels of resistance to H. glycines were inoculated with 0 and 1,000 J2/seedlings. Twenty-four hours post inoculation they were transplanted into pasteurized soil. Subsequently they were harvested at 1, 7, 10, 14 and 21 days post inoculation for DNA extraction. With the qPCR assay, the time needed to differentiate highly resistant cultivars from the rest was reduced. Quantification of H. glycines infection by traditional means (numbers of females produced in 30 days) is a time-consuming practice; the qPCR method can replace the traditional one and improve precision in determining infection levels.
Resumo:
The parasites fauna of 491 specimens of Sander lucioperca, Linnaeus 1758 (246 specimens) and catfish, Silurus glanis, Linnaeus 1758 (245 specimens) in different size from Aras Reservoir situated in North —west of the Iran was investigated. During 2006-2007 Totally 16 parasite species were recorded. The most various parasites was found in catfish (10 species) while the lowest number was recorded in Sander lucioperca (6 species). Among them, however three genera of protozoa (Trichodina, Vorticella, Ichthyophthirius), two genera of Monogenea (Gyrodactylus, Silurodiscoides), Digenea, Cestoda, Nematoda, Acanthocephala and Annelida one species each (Diplostomum, Protocephalus, Eustrongylides, Neoechinorhynchus, Pisicola) and two crustacean genera (Argulus and Lernea) recorded and we can come to conclusion in comparison with the earlier data the actual parasite fauna of two hosts has been greatly improved. According to the present study the prevalence, mean abundance and mean intensity of parasites species of both hosts were highly influenced by seasons of the year. Some species found, however show a tendency to be more abundant ides Trichodina sp., Ichthyophthirius multifiliis, Silurodiscoides vistolensis, Protocephalus osculatus respectively. Most parasites species live in gills and skin, where is highly sensitive to some pathogens parasites species (Trichodina, Vorticella, Ichthyophthirius, Pisicola geometra, Argulus foliaceus; Lernea) and While some are specialist (Silurodiscoides vistolensis and Silurodiscoides siluri) other more or less generalist (ichthyophthirius).
Resumo:
Background: Although the Democratic Republic of Sao Tome and Principe (DRSTP) has undertaken school children-based deworming programs against intestinal parasitic infections (IPIs) using a single dose of mebendazole annually since 2005, it remains unclear as to the outcome to date. The present study intends to investigate the recent IPIs status among school children living in capital areas of the DRSTP. Methods: A total of 252 school children (121 boys and 131 girls) of grades 4 and 5 from 4 primary schools located in the capital areas participated in the present study and their fresh fecal specimens were examined for the presence of any parasites using the merthiolate- iodine-formaldehyde concentration method as conducted. Results: The overall prevalence of IPIs was 64.7% (163/ 252). No significant gender difference in prevalence between boys (67.8%) and girls (61.8%) was found (p = 0.3). The majority of school children were infected with a single species of parasite (55.8%). Altogether, 12 different intestinal parasite species were identified in DRSTP school children, of which 9 species were pathogenic and the remaining 3 were non-pathogenic. Conclusion: Improving the detection method, sanitation facilities and personal hygiene as well as utilizing combined drugs are all important measures to greatly reduce IPIs in DRSTP school children.
Suppression of mucosal mastocytosis by infection with the intestinal nematode Nematospiroides dubius