923 resultados para parabolic-elliptic equation, inverse problems, factorization method
Resumo:
An iterative method for reconstruction of solutions to second order elliptic equations by Cauchy data given on a part of the boundary, is presented. At each iteration step, a series of mixed well-posed boundary value problems are solved for the elliptic operator and its adjoint. The convergence proof of this method in a weighted L2 space is included. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Resumo:
An iterative method for the reconstruction of a stationary three-dimensional temperature field, from Cauchy data given on a part of the boundary, is presented. At each iteration step, a series of mixed well-posed boundary value problems are solved for the heat operator and its adjoint. A convergence proof of this method in a weighted L 2-space is include
Resumo:
The author is partially supported by: M. U. R. S. T. Prog. Nazionale “Problemi e Metodi nella Teoria delle Equazioni Iperboliche”.
Resumo:
A new method for solving some hard combinatorial optimization problems is suggested, admitting a certain reformulation. Considering such a problem, several different similar problems are prepared which have the same set of solutions. They are solved on computer in parallel until one of them will be solved, and that solution is accepted. Notwithstanding the evident overhead, the whole run-time could be significantly reduced due to dispersion of velocities of combinatorial search in regarded cases. The efficiency of this approach is investigated on the concrete problem of finding short solutions of non-deterministic system of linear logical equations.
Resumo:
* Work is partially supported by the Lithuanian State Science and Studies Foundation.
Resumo:
The evaluation from experimental data, of physical quantities, which enter into the electromagnetic Maxwell equations, is described as inverse optical problem. The functional relations between the dependent and independent variables are of transcendental character and numeric procedures for evaluation of the unknowns are largely used. Herein, we discuss a direct approach to the solution, illustrated by a specific example of determination of thin films optical constants from spectrophotometric data. New algorithm is proposed for the parameters evaluation, which does not need an initial guess of the unknowns and does not use iterative procedures. Thus we overcome the intrinsic deficiency of minimization techniques, such as gradient search methods, Simplex methods, etc. The price of it is a need of more computing power, but our algorithm is easily implemented in structures such as grid clusters. We show the advantages of this approach and its potential for generalization to other inverse optical problems.
Resumo:
2000 Mathematics Subject Classification: 26A33 (primary), 35S15 (secondary)
Resumo:
Mathematics Subject Classification: 26A33, 31B10
Resumo:
Adaptive critic methods have common roots as generalizations of dynamic programming for neural reinforcement learning approaches. Since they approximate the dynamic programming solutions, they are potentially suitable for learning in noisy, nonlinear and nonstationary environments. In this study, a novel probabilistic dual heuristic programming (DHP) based adaptive critic controller is proposed. Distinct to current approaches, the proposed probabilistic (DHP) adaptive critic method takes uncertainties of forward model and inverse controller into consideration. Therefore, it is suitable for deterministic and stochastic control problems characterized by functional uncertainty. Theoretical development of the proposed method is validated by analytically evaluating the correct value of the cost function which satisfies the Bellman equation in a linear quadratic control problem. The target value of the critic network is then calculated and shown to be equal to the analytically derived correct value.
Resumo:
In nonlinear and stochastic control problems, learning an efficient feed-forward controller is not amenable to conventional neurocontrol methods. For these approaches, estimating and then incorporating uncertainty in the controller and feed-forward models can produce more robust control results. Here, we introduce a novel inversion-based neurocontroller for solving control problems involving uncertain nonlinear systems which could also compensate for multi-valued systems. The approach uses recent developments in neural networks, especially in the context of modelling statistical distributions, which are applied to forward and inverse plant models. Provided that certain conditions are met, an estimate of the intrinsic uncertainty for the outputs of neural networks can be obtained using the statistical properties of networks. More generally, multicomponent distributions can be modelled by the mixture density network. Based on importance sampling from these distributions a novel robust inverse control approach is obtained. This importance sampling provides a structured and principled approach to constrain the complexity of the search space for the ideal control law. The developed methodology circumvents the dynamic programming problem by using the predicted neural network uncertainty to localise the possible control solutions to consider. A nonlinear multi-variable system with different delays between the input-output pairs is used to demonstrate the successful application of the developed control algorithm. The proposed method is suitable for redundant control systems and allows us to model strongly non-Gaussian distributions of control signal as well as processes with hysteresis. © 2004 Elsevier Ltd. All rights reserved.
Resumo:
There are discussed three groups of problems which are solved with the help of the graphic method.
Resumo:
Mathematical Subject Classification 2010: 35R11, 42A38, 26A33, 33E12.
Resumo:
AMS subject classification: 90C29.
Resumo:
2010 Mathematics Subject Classification: Primary 35J70; Secondary 35J15, 35D05.