979 resultados para organic P


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three new polynuclear copper(II) complexes of 2-picolinic acid (Hpic), {[Cu-2(pic)(3)(H2O)]ClO4}(n) (1), {[Cu-2(pic)(3)(H2O)]BF4}(n) (2), and [Cu-2(pic)3(H2O)(2)(NO3)](n) (3), have been synthesized by reaction of the "metalloligand" [Cu-(pic)(2)] with the corresponding copper(II) salts. The compounds are characterized by single-crystal X-ray diffraction analyses and variable-temperature magnetic measurements. Compounds 1 and 2 are isomorphous and crystallize in the triclinic system with space group P (1) over bar, while 3 crystallizes in the monoclinic system with space group P2(1)/n. The structural analyses reveal that complexes 1 and 2 are constructed by "fish backbone" chains through syn-anti (equatorial-equatorial) carboxylate bridges, which are linked to one another by syn-anti (equatorial-axial) carboxylate bridges, giving rise to a rectangular grid-like two-dimensional net. Complex 3 is formed by alternating chains of syn-anti carboxylate-bridged copper(II) atoms, which are linked together by strong H bonds involving coordinated nitrate ions and water molecules and uncoordinated oxygen atoms from carboxylate groups. The different coordination ability of the anions along with their involvement in the H-bonding network seems to be responsible for the difference in the final polymeric structures. Variable-temperature (2-300 K) magnetic susceptibility measurement shows the presence of weak ferromagnetic coupling for all three complexes that have been fitted with a fish backbone model developed for 1 and 2 (J = 1.74 and 0.99 cm(-1); J' = 0.19 and 0.25 cm(-1), respectively) and an alternating chain model for 3 (J = 1.19 cm(-1) and J' = 1.19 cm(-1)).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DiGrignard reagents of the form XMg(CH2)(n)MgX, where X = Br or I and n = 6, 8, 10 or 12, were allowed to react with PhSnCl3 to produce highly cross-linked Ph-Sn polymeric networks. The Sn-H moiety was incorporated into these insoluble network polymers by treatment with Br-2 and NaBH4. Excellent accessibility of the Sn-H was displayed by these solvent penetrable but insoluble networks, giving them higher Sn-H loadings than all previously reported supported reagents. These reagents were totally regenerable in NaBH4 for radical assisted organic synthesis and no detectable leaching of the Sn into solution was observed during these reactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reaction of single crystals of benzoic and trans-cinnamic acids with 200 Torr pressure of ammonia gas in a sealed glass bulb at 20 degrees C generates the corresponding ammonium salts; there is no sign of any 1:2 adduct as has been reported previously for related systems. Isotopic substitution using ND3 has been used to aid identification of the products. Adipic acid likewise reacts with NH3 gas to form a product in which ammonium salts are formed at both carboxylic acid groups. Reaction of 0.5 Torr pressure of NO2 gas with single crystals of 9-methylanthracene and 9-anthracenemethanol in a flow system generates nitrated products where the nitro group appears to be attached at the 10-position, i.e. the position trans to the methyl or methoxy substituent on the central ring. Isotopic substitution using (NO2)-N-15 has been used to confirm the identity of the bands arising from the coordinated NO2 group. The products formed when single crystals of hydantoin are reacted with NO2 gas under similar conditions depend on the temperature of the reaction. At 20 degrees C, a nitrated product is formed, but at 65 degrees C this gives way to a product containing no nitro groups. The findings show the general applicability of infrared microspectroscopy to a study of gas-solid reactions of organic single crystals. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formation and composition of secondary organic aerosol (SOA) from the photooxidation of benzene, p-xylene, and 1,3,5-trimethylbenzene has been simulated using the Master Chemical Mechanism version 3.1 (MCM v3.1) coupled to a representation of the transfer of organic material from the gas to particle phase. The combined mechanism was tested against data obtained from a series of experiments conducted at the European Photoreactor (EUPHORE) outdoor smog chamber in Valencia, Spain. Simulated aerosol mass concentrations compared reasonably well with the measured SOA data only after absorptive partitioning coefficients were increased by a factor of between 5 and 30. The requirement of such scaling was interpreted in terms of the occurrence of unaccounted-for association reactions in the condensed organic phase leading to the production of relatively more nonvolatile species. Comparisons were made between the relative aerosol forming efficiencies of benzene, toluene, p-xylene, and 1,3,5-trimethylbenzene, and differences in the OH-initiated degradation mechanisms of these aromatic hydrocarbons. A strong, nonlinear relationship was observed between measured (reference) yields of SOA and (proportional) yields of unsaturated dicarbonyl aldehyde species resulting from ring-fragmenting pathways. This observation, and the results of the simulations, is strongly suggestive of the involvement of reactive aldehyde species in association reactions occurring in the aerosol phase, thus promoting SOA formation and growth. The effect of NO, concentrations on SOA formation efficiencies (and formation mechanisms) is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The self-assembly of a modified fragment of the amyloid beta peptide, based on sequence A beta(16-20), KLVFF, extended to give AAKLVFF is studied in methanol. Self-assembly into peptide nanotubes is observed, as confirmed by electron microscopy and small-angle X-ray scattering. The secondary structure of the peptide is probed by FTIR and circular dichroism, and UV/visible spectroscopy provides evidence for the important role of aromatic interactions between phenylalanine residues in driving beta-sheet self-assembly. The beta-sheets wrap helically to form the nanotubes, the nanotube wall comprising four wrapped beta-sheets. At higher concentration, the peptide nanotubes form a nematic phase that exhibits spontaneous flow alignment as observed by small-angle neutron scattering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the reaction of equimolar amounts of copper(II) acetate with 2,2'-dipyridylamine (DPA) in aqueous tetrahydrofuran, in presence of KOH, aerial CO2 is spontaneously fixed to the carbonate anion yielding [Cu(DPA)(CO3)] . 3H(2)O (1). X-ray crystallography shows the presence of zigzag ribbons of cyclic water pentamers in the channels of a chain-like metallo-organic framework. The water ribbons are stabilised by hydrogen bonds to the metallo-organic backbone. Each (H2O)(5) pentamer is approximately planar.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental difficulties sometimes force modellers to use predicted rate coefficients for reactions of oxygenated volatile organic compounds (oVOCs). We examine here methods for making the predictions for reactions of atmospheric initiators of oxidation, NO3, OH, O-3 and O(P-3), with unsaturated alcohols and ethers. Logarithmic correlations are found between measured rate coefficients and calculated orbital energies, and these correlations may be used directly to estimate rate coefficients for compounds where measurements have not been performed. To provide a shortcut that obviates the need to calculate orbital energies, structure-activity relations (SARs) are developed. Our SARs are tested for predictive power against compounds for which experimental rate coefficients exist, and their accuracy is discussed. Estimated atmospheric lifetimes for oVOCs are presented. The SARs for alkenols successfully predict key rate coefficients, and thus can be used to enhance the scope of atmospheric models incorporating detailed chemistry. SARs for the ethers have more limited applicability, but can still be useful in improving tropospheric models. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HL and MeL are prepared by condensing benzil dihydrazone with 2-formylpyridine and 2-acetylpyridine, respectively, in 1:2 molar proportions. While in a reaction with [Ru-(C6H6)Cl-2](2), HL yields the cation [Ru(C6H6){5,6-diphenyl-3-(pyridin-2-yl)- 1,2,4-triazine}Cl](+), MeL gives the cation [Ru(C6H6)(MeL)Cl](+). Both the cations are isolated as their hexafluorophosphate salts and characterised by X-ray crystallography. In the case of HL, double domino electrocyclic/elimination reactions are found to occur. The electrocyclic reaction occurs in a C=N-N=C-C=N fragment of HL and the elimination reaction involves breaking of a C-H bond of HL. Density functional calculations on model complexes indicate that the identified electrocyclic reaction is thermochemically as well as kinetically feasible for both HL and MeL in the gas phase. For a double domino reaction, similar to that operative in HL, to occur for MeL, breaking of a C-C bond would be required in the elimination step. Our model calculations show the energy barrier for this elimination step to be much higher (329.1 kJ mol(-1)) for MeL than that for HL (96.3 kJ mol(-1)). Thus, the domino reaction takes place for HL and not for MeL. This accounts for the observed stability of [Ru(C6H6)-(MeL)Cl](+) under the reaction conditions employed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mixture of organic acids and lactulose for preventing or reducing colonization of the gut by Salmonella Typhimurium was evaluated in pigs. A total of 63 4-week-old commercial piglets were randomly distributed into three different experimental dietary groups: a plain diet without additives (PD) and the same diet supplemented with either 0.4% (w/v) formic acid and 0.4% lactic acid (w/v) (AC) or 1% (w/v) lactulose (LC). After 7 days of adaptation, two-thirds of the pigs (14 from each diet) were challenged with a 2-mL oral dose of 10(8) CFU/mL of Salmonella Typhimurium, leaving the remaining animals unchallenged (UC). After 4 and 10 days post-challenge, pigs were euthanized and the ileum and caecum content were aseptically sampled to (a) quantify lactic, formic, and short-chain fatty acids (SCFA), (b) quantify bacterial populations and Salmonella by fluorescence in situ hybridization and (c) qualitatively analyse bacterial populations through denaturing gradient gel electrophoresis (DGGE). Modification of fermentation products and counts of some of the bacterial groups analysed in the challenged pigs receiving the treatments AC and LC were minimal. Treatments only influenced the bacterial diversity after 10 days post-challenge, with AC generating a lower number of DGGE bands than UC(P < 0.05). Neither the inclusion of a mixture of 0.4% (w/v) formic and 0.4% (w/v) lactic acids nor of 1% (w/v) lactulose in the feed influenced numbers of Salmonella in the ileum and caecum of experimentally challenged pigs. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since 1988, there has been, on average, a 91% increase in dissolved organic carbon (DOC) concentrations of UK lakes and streams in the Acid Waters Monitoring Network (AWMN). Similar DOC increases have been observed in surface waters across much of Europe and North America. Much of the debate about the causes of rising DOC has, as in other studies relating to the carbon cycle, focused on factors related to climate change. Data from our peat-core experiments support an influence of climate on DOC, notably an increase in production with temperature under aerobic, and to a lesser extent anaerobic, conditions. However, we argue that climatic factors may not be the dominant drivers of DOC change. DOC solubility is suppressed by high soil water acidity and ionic strength, both of which have decreased as a result of declining sulphur deposition since the 1980s, augmented during the 1990s in the United Kingdom by a cyclical decline in sea-salt deposition. Our observational and experimental data demonstrate a clear, inverse and quantitatively important link between DOC and sulphate concentrations in soil solution. Statistical analysis of 11 AWMN lakes suggests that rising temperature, declining sulphur deposition and changing sea-salt loading can account for the majority of the observed DOC trend. This combination of evidence points to the changing chemical composition of atmospheric deposition, particularly the substantial reduction in anthropogenic sulphur emissions during the last 20 years, as a key cause of rising DOC. The implications of rising DOC export for the carbon cycle will be very different if linked primarily to decreasing acid deposition, rather than to changes in climate, suggesting that these systems may be recovering rather than destabilising.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Much uncertainty still exists regarding the relative importance of organic acids in relation to acid deposition in controlling the acidity of soil and surface waters. This paper contributes to this debate by presenting analysis of seasonal variations in atmospheric deposition, soil solution and stream water chemistry for two UK headwater catchments with contrasting soils. Acid neutralising capacity (ANC), dissolved organic carbon (DOC) concentrations and the Na:Cl ratio of soil and stream waters displayed strong seasonal patterns with little seasonal variation observed in soil water pH. These patterns, plus the strong relationships between ANC, Cl and DOC, suggest that cation exchange and seasonal changes in the production of DOC and seasalt deposition are driving a shift in the proportion of acidity attributable to strong acid anions, from atmospheric deposition, during winter to predominantly organic acids in summer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most of the dissolved organic carbon (DOC) exported from catchments is transported during storm events. Accurate assessments of DOC fluxes are essential to understand long-term trends in the transport of DOC from terrestrial to aquatic systems, and also the loss of carbon from peatlands to determine changes in the source/sink status of peatland carbon stores. However, many long-term monitoring programmes collect water samples at a frequency (e.g. weekly/monthly) less than the time period of a typical storm event (typically <1–2 days). As widespread observations in catchments dominated by organo-mineral soils have shown that both concentration and flux of DOC increases during storm events, lower frequency monitoring could result in substantial underestimation of DOC flux as the most dynamic periods of transport are missed. However, our intensive monitoring study in a UK upland peatland catchment showed a contrasting response to these previous studies. Our results showed that (i) DOC concentrations decreased during autumn storm events and showed a poor relationship with flow during other seasons; and that (ii) this decrease in concentrations during autumn storms caused DOC flux estimates based on weekly monitoring data to be over-estimated, rather than under-estimated, because of over rather than under estimation of the flow-weighted mean concentration used in flux calculations. However, as DOC flux is ultimately controlled by discharge volume, and therefore rainfall, and the magnitude of change in discharge was greater than the magnitude of decline in concentrations, DOC flux increased during individual storm events. The implications for long-term DOC trends are therefore contradictory, as increased rainfall could increase flux but cause an overall decrease in DOC concentrations from peatland streams. Care needs to be taken when interpreting long-term trends in DOC flux rather than concentration; as flux is calculated from discharge estimates, and discharge is controlled by rainfall, DOC flux and rainfall/discharge will always be well correlated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A strong relationship between dissolved organic carbon (DOC) and sulphate (SO42−) dynamics under drought conditions has been revealed from analysis of a 10-year time series (1993–2002). Soil solution from a blanket peat at 10 cm depth and stream water were collected at biweekly and weekly intervals, respectively, by the Environmental Change Network at Moor House-Upper Teesdale National Nature Reserve in the North Pennine uplands of Britain. DOC concentrations in soil solution and stream water were closely coupled, displaying a strong seasonal cycle with lowest concentrations in early spring and highest in late summer/early autumn. Soil solution DOC correlated strongly with seasonal variations in soil temperature at the same depth 4-weeks prior to sampling. Deviation from this relationship was seen, however, in years with significant water table drawdown (>−25 cm), such that DOC concentrations were up to 60% lower than expected. Periods of drought also resulted in the release of SO42−, because of the oxidation of inorganic/organic sulphur stored in the peat, which was accompanied by a decrease in pH and increase in ionic strength. As both pH and ionic strength are known to control the solubility of DOC, inclusion of a function to account for DOC suppression because of drought-induced acidification accounted for more of the variability of DOC in soil solution (R2=0.81) than temperature alone (R2=0.58). This statistical model of peat soil solution DOC at 10 cm depth was extended to reproduce 74% of the variation in stream DOC over this period. Analysis of annual budgets showed that the soil was the main source of SO42− during droughts, while atmospheric deposition was the main source in other years. Mass balance calculations also showed that most of the DOC originated from the peat. The DOC flux was also lower in the drought years of 1994 and 1995, reflecting low DOC concentrations in soil and stream water. The analysis presented in this paper suggests that lower concentrations of DOC in both soil and stream waters during drought years can be explained in terms of drought-induced acidification. As future climate change scenarios suggest an increase in the magnitude and frequency of drought events, these results imply potential for a related increase in DOC suppression by episodic acidification.