933 resultados para nutrient partitioning agent
Resumo:
Fertilizer recommendations for cranberry crops are guided by plant and soil tests. However, critical tissue concentration ranges used for diagnostic purposes are inherently biased by nutrient interactions and physiological age. Compositional data analysis using isometric log ratios (ilr) of nutrients as well as time detrending can avoid numerical biases. The objective was to derive unbiased nutrient signature standards for cranberry in Quebec and compare those standards to literature data. Field trials were conducted during 3 consecutive years with varying P treatments at six commercial sites in Quebec. Leaf tissues were analyzed for N, P, K, Ca, Mg, B, Cu, Zn, Mn and Fe. The analytical results were transformed into ilr nutrient balances of parts and groups of parts. High-yield reference ilr values were computed for cranberry yielding greater than 35 Mg ha-1. Many cranberry fields appeared to be over-supplied with K and either under-supplied with Mn or over-supplied with Fe as shown by their imbalanced [K | Ca, Mg] and [Mn | Fe] ratios. Nutrient concentration ranges from Maine and Wisconsin, USA, were combined into ilr values to generate ranges of balances. It was found that these nutrient ranges were much too broad for application in Quebec or outside the Quebec ranges for the [Ca | Mg] and the [Mn | Fe] balances, that were lower compared to those of high yielding cranberry crops in Quebec.
Resumo:
Ohjelmistoteollisuudessa pitkiä ja vaikeita kehityssyklejä voidaan helpottaa käyttämällä hyväksi ohjelmistokehyksiä (frameworks). Ohjelmistokehykset edustavat kokoelmaa luokkia, jotka tarjoavat yleisiä ratkaisuja tietyn ongelmakentän tarpeisiin vapauttaen ohjelmistokehittäjät keskittymään sovelluskohtaisiin vaatimuksiin. Hyvin suunniteltujen ohjelmistokehyksien käyttö lisää suunnitteluratkaisujen sekä lähdekoodin uudelleenkäytettävyyttä enemmän kuin mikään muu suunnittelulähestymistapa. Tietyn kohdealueen tietämys voidaan tallentaa ohjelmistokehyksiin, joista puolestaan voidaan erikoistaa viimeisteltyjä ohjelmistotuotteita. Tässä diplomityössä kuvataan ohjelmistoagentteihin (software agents) perustuvaa ohjelmistokehyksen suunnittelua toteutusta. Pääpaino työssä on vaatimusmäärittelyä vastaavan suunnitelman sekä toteutuksen kuvaaminen ohjelmistokehykselle, josta voidaan erikoistaa erilaiseen tiedonkeruuseen kykeneviä ohjelmistoja Internet ympäristöön. Työn kokeellisessa osuudessa esitellään myös esimerkkisovellus, joka perustuu työssä kehitettyyn ohjelmistokehykseen.
Resumo:
Hancornia speciosa Gomes (Mangaba tree) is a fruit tree belonging to the Apocynaceae family and is native to Brazil. The production of seedlings of this species is limited by a lack of technical and nutritional expertise. To address this deficiency, this study aimed to characterize the visual symptoms of micronutrient deficiency and to assess growth and leaf nutrient accumulation in H. speciosa seedlings supplied with nutrient solutions that lack individual micronutrients. H. speciosa plants were grown in nutrient solution in a greenhouse according to a randomized block design, with four replicates. The treatments consisted of a group receiving complete nutrient solution and groups treated with a nutrient solution lacking one of the following micronutrients: boron (B), copper (Cu), iron (Fe), manganese (Mn), zinc (Zn), and molybdenum (Mo). The visual symptoms of nutrient deficiency were generally easy to characterize. Dry matter production was affected by the omission of micronutrients, and the treatment lacking Fe most limited the stem length, stem diameter, root length, and number of leaves in H. speciosa seedlings as well as the dry weight of leaves, the total dry weight, and the relative growth in H. speciosa plants. The micronutrient contents of H. speciosa leaves from plants receiving the complete nutrient solution treatment were, in decreasing order, Fe>Mn>Cu>Zn>B.
Resumo:
Glucose-induced insulin secretion is an essential function of pancreatic β-cells that is partially lost in individuals affected by Type 2 diabetes. This unique property of β-cells is acquired through a poorly understood postnatal maturation process involving major modifications in gene expression programs. Here we show that β-cell maturation is associated with changes in microRNA expression induced by the nutritional transition that occurs at weaning. When mimicked in newborn islet cells, modifications in the level of specific microRNAs result in a switch in the expression of metabolic enzymes and cause the acquisition of glucose-induced insulin release. Our data suggest microRNAs have a central role in postnatal β-cell maturation and in the determination of adult functional β-cell mass. A better understanding of the events governing β-cell maturation may help understand why some individuals are predisposed to developing diabetes and could lead to new strategies for the treatment of this common metabolic disease.
Resumo:
We have studied how leaders emerge in a group as a consequence of interactions among its members. We propose that leaders can emerge as a consequence of a self-organized process based on local rules of dyadic interactions among individuals. Flocks are an example of self-organized behaviour in a group and properties similar to those observed in flocks might also explain some of the dynamics and organization of human groups. We developed an agent-based model that generated flocks in a virtual world and implemented it in a multi-agent simulation computer program that computed indices at each time step of the simulation to quantify the degree to which a group moved in a coordinated way (index of flocking behaviour) and the degree to which specific individuals led the group (index of hierarchical leadership). We ran several series of simulations in order to test our model and determine how these indices behaved under specific agent and world conditions. We identified the agent, world property, and model parameters that made stable, compact flocks emerge, and explored possible environmental properties that predicted the probability of becoming a leader.
Resumo:
The objective of my thesis is to assess mechanisms of ecological community control in macroalgal communities in the Baltic Sea. In the top-down model, predatory fish feed on invertebrate mesograzers, releasing algae partly from grazing pressure. Such a reciprocal relationship is called trophic cascade. In the bottom-up model, nutrients increase biomass in the food chain. The nutrients are first assimilated by algae and, via food chain, increase also abundance of grazers and predators. Previous studies on oceanic shores have described these two regulative mechanisms in the grazer - alga link, but how they interact in the trophic cascades from fish to algae is still inadequately known. Because the top-down and bottom-up mechanisms are predicted to depend on environmental disturbances, such as wave stress and light, I have studied these models at two distinct water depths. There are five factorial field experiments behind the thesis, which were all conducted in the Finnish Archipelago Sea. In all the experiments, I studied macroalgal colonization - either density, filament length or biomass - on submerged colonization substrates. By excluding predatory fish and mesograzers from the algal communities, the studies compared the strength of the top-down control to natural algal communities. A part of the experimental units were, in addition, exposed to enriched nitrogen and phosphorus concentrations, which enabled testing of bottom-up control. These two models of community control were further investigated in shallow (<1 m) and deep (ca. 3 m) water. Moreover, the control mechanisms were also expected to depend on grazer species. Therefore different grazer species were enclosed into experimental units and their impacts on macroalgal communities were followed specifically. The community control in the Baltic rocky shores was found to follow theoretical predictions, which have not been confirmed by field studies before. Predatory fish limited grazing impact, which was seen as denser algal communities and longer algal filaments. Nutrient enrichment increased density and filament length of annual algae and, thus, changed the species composition of the algal community. The perennial alga Fucus vesiculosusA and the red alga Ceramium tenuicorne suffered from the increased nutrient availabilities. The enriched nutrient conditions led to denser grazer fauna, thereby causing strong top-down control over both the annual and perennial macroalgae. The strength of the top-down control seemed to depend on the density and diversity of grazers and predators as well as on the species composition of macroalgal assemblages. The nutrient enrichment led to, however, weaker limiting impact of predatory fish on grazer fauna, because fish stocks did not respond as quickly to enhanced resources in the environment as the invertebrate fauna. According to environmental stress model, environmental disturbances weaken the top-down control. For example, on a wave-exposed shore, wave stress causes more stress to animals close to the surface than deeper on the shore. Mesograzers were efficient consumers at both the depths, while predation by fish was weaker in shallow water. Thus, the results supported the environmental stress model, which predicts that environmental disturbance affects stronger the higher a species is in the food chain. This thesis assessed the mechanisms of community control in three-level food chains and did not take into account higher predators. Such predators in the Baltic Sea are, for example, cormorant, seals, white-tailed sea eagle, cod and salmon. All these predatory species were recently or are currently under intensive fishing, hunting and persecution, and their stocks have only recently increased in the region. Therefore, it is possible that future densities of top predators may yet alter the strengths of the controlling mechanisms in the Baltic littoral zone.
Resumo:
Stable isotope abundances of carbon (δ13C) and nitrogen (δ15N) in the bone of 13 species of marine mammals from the northwest coast of Africa were investigated to assess their positions in the local trophic web and their preferred habitats. Also, samples of primary producers and potential prey species from the study area were collected to characterise the local isotopic landscape. This characterisation indicated that δ13C values increased from offshore to nearshore and that δ15N was a good proxy for trophic level. Therefore, the most coastal species were Monachus monachus and Sousa teuszii, whereas the most pelagic were Physeter macrocephalus and Balaenoptera acutorostrata. δ15N values indicated that marine mammals located at the lowest trophic level were B. acutorostrata, Stenella coeruleoalba and Delphinus sp., and those occupying the highest trophic level were M. monachus and P. macrocephalus. The trophic level of Orcinus orca was similar to that of M. monachus, suggesting that O. orca preys on fish. Conservation of coastal and threatened species (M. monachus and S. teuszii) off NW Africa should be a priority because these species, as the main apex predators, cannot be replaced by other marine mammals.
Resumo:
Plant roots forage the soil for minerals whose concentrations can be orders of magnitude away from those required for plant cell function. Selective uptake in multicellular organisms critically requires epithelia with extracellular diffusion barriers. In plants, such a barrier is provided by the endodermis and its Casparian strips-cell wall impregnations analogous to animal tight and adherens junctions. Interestingly, the endodermis undergoes secondary differentiation, becoming coated with hydrophobic suberin, presumably switching from an actively absorbing to a protective epithelium. Here, we show that suberization responds to a wide range of nutrient stresses, mediated by the stress hormones abscisic acid and ethylene. We reveal a striking ability of the root to not only regulate synthesis of suberin, but also selectively degrade it in response to ethylene. Finally, we demonstrate that changes in suberization constitute physiologically relevant, adaptive responses, pointing to a pivotal role of the endodermal membrane in nutrient homeostasis.
Resumo:
By reconstructing the nutrient balance of a Catalan v illage circa 1861-65 we examine the sustainability of organic agricultural sy stems in the northwest Mediterranean bioregion prior to the green rev olution and the question of whether the nutrients extracted f rom the soil were replenished. With a population density of 59 inhabitants per square km, similar to other northern European rural areas at that time, and a lower liv estock density per cropland unit, this v illage experienced a manure shortage. The gap was f illed by other labour-intensiv e way s of transf erring nutrients f rom uncultiv ated areas into the cropland. Key elements in this agricultural sy stem were v iney ards because they hav e f ew nutrient requirements, and woodland and scrublands as sources of relev ant amounts of nutrients collected in sev eral ways.
Resumo:
We empirically applied the GrooFiWorld agent-based model (Puga-González et al. 2009) in a group of captive mangabeys (Cercocebus torquatus). We analysed several measurements related to aggression and affiliative patterns. The group adopted a combination of despotic and egalitarian behaviours resulting from the behavioural flexibility observed in the Cercopithecinae subfamily. Our study also demonstrates that the GrooFiWorld agent-based model can be extended to other members of the Cercopithecinae subfamily generating parsimonious hypotheses related to the social organization.
Resumo:
Objective:To investigate the effects of dilution of paramagnetic contrast agent with iodinated contrast and xylocaine on the signal intensity during magnetic resonance arthrography, and to improve the paramagnetic contrast agent concentration utilized in this imaging modality.Materials and Methods:Samples specially prepared for the study with three different concentrations of paramagnetic contrast agent diluted in saline, iodinated contrast agent and xylocaine were imaged with fast spin echo T1-weighted sequences with fat saturation. The samples were placed into flasks and graphical analysis of the signal intensity was performed as a function of the paramagnetic contrast concentration.Results:As compared with samples of equal concentrations diluted only with saline, the authors have observed an average signal intensity decrease of 20.67% for iodinated contrast agent, and of 28.34% for xylocaine. However, the increased gadolinium concentration in the samples caused decrease in signal intensity with all the dilutions.Conclusion:Minimizing the use of iodinated contrast media and xylocaine and/or the use of a gadolinium concentration of 2.5 mmol/L diluted in saline will improve the sensitivity of magnetic resonance arthrography.
Resumo:
Adaptation of organisms to ever-changing nutritional environments relies on sensor tissues and systemic signals. Identification of these signals would help understand the physiological crosstalk between organs contributing to growth and metabolic homeostasis. Here we show that Eiger, the Drosophila TNF-α, is a metabolic hormone that mediates nutrient response by remotely acting on insulin-producing cells (IPCs). In the condition of nutrient shortage, a metalloprotease of the TNF-α converting enzyme (TACE) family is active in fat body (adipose-like) cells, allowing the cleavage and release of adipose Eiger in the hemolymph. In the brain IPCs, Eiger activates its receptor Grindelwald, leading to JNK-dependent inhibition of insulin production. Therefore, we have identified a humoral connexion between the fat body and the brain insulin-producing cells relying on TNF-α that mediates adaptive response to nutrient deprivation.