987 resultados para nuclear structure


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Half of the members of the nuclear receptors superfamily are so-called orphan receptors because the identity of their ligand, if any, is unknown. Because of their important biological roles, the study of orphan receptors has attracted much attention recently and has resulted in rapid advances that have helped in the discovery of novel signaling pathways. In this review we present the main features of orphan receptors, discuss the structure of their ligand-binding domains and their biological functions. The paradoxical existence of a pharmacology of orphan receptors, a rapidly growing and innovative field, is highlighted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Doped ceria (CeO2) compounds are fluorite related oxides which show oxide ionic conductivity higher than yttria-stabilized zirconia in oxidizing atmosphere. As a consequence of this, a considerable interest has been shown in application of these materials for low (400-650 degrees C) temperature operation of solid oxide fuel cells (SOFCs). In this paper, our experimental data about the influence of microstructure at the atomic level on electrochemical properties were reviewed in order to develop high quality doped CeO2 electrolytes in fuel cell applications. Using this data in the present paper, our original idea for a design of nanodomain structure in doped CeO2 electrolytes was suggested. The nanosized powders and dense sintered bodies of M doped CeO2 (M:Sm,Gd,La,Y,Yb, and Dy) compounds were fabricated. Also nanostiructural features in these specimens were introduced for conclusion of relationship between electrolytic properties and domain structure in doped CeO2. It is essential that the electrolytic properties in doped CeO2 solid electrolytes reflect in changes of microstructure even down to the atomic scale. Accordingly, a combined approach of nanostructure fabrication, electrical measurement and structure characterization was required to develop superior quality doped CeO2 electrolytes in the fuel cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heterogeneous nuclear ribonucleoprotein (hnRNP) A2 binds a 21-nucleotide myelin basic protein mRNA response element, the A2RE, and A2RE-like sequences in other localized mRNAs, and is a trans-acting factor in oligodendrocyte cytoplasmic RNA trafficking. Recombinant human hnRNPs A1 and A2 were used in a biosensor to explore interactions with A2RE and the cognate oligodeoxyribonucleotide. Both proteins have a single site that bound oligonucleotides with markedly different sequences but did not bind in the presence of heparin. Both also possess a second, specific site that bound only A2RE and was unaffected by heparin, hnRNP A2 bound A2RE in the latter site with a K-d near 50 nM, whereas the K-d for hnRNP A1 was above 10 muM. UV cross-linking assays led to a similar conclusion. Mutant A2RE sequences, that in earlier qualitative studies appeared not to bind hnRNP A2 or support RNA trafficking in oligodendrocytes, had dissociation constants above 5 muM for this protein. The two concatenated RNA recognition motifs (RRMs), but not the individual RRMs, mimicked the binding behavior of hnRNP A2. These data highlight the specificity of the interaction of A2RE with these hnRNPs and suggest that the sequence-specific A2RE-binding site on hnRNP A2 is formed by both RRMs acting in cis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Australian ghost bat is a large, opportunistic carnivorous species that has undergone a marked range contraction toward more mesic, tropical sites over the past century. Comparison of mitochondrial DNA (mtDNA) control region sequences and six nuclear microsatellite loci in 217 ghost bats from nine populations across subtropical and tropical Australia revealed strong population subdivision (mtDNA phi(ST) = 0.80; microsatellites URST = 0.337). Low-latitude (tropical) populations had higher heterozygosity and less marked phylogeographic structure and lower subdivision among sites within regions (within Northern Territory [NT] and within North Queensland [NQ]) than did populations at higher latitudes (subtropical sites; central Queensland [CQ]), although sampling of geographically proximal breeding sites is unavoidably restricted for the latter. Gene flow among populations within each of the northern regions appears to be male biased in that the difference in population subdivision for mtDNA and microsatellites (NT phi(ST) = 0.39, URST = 0.02; NQ phi(ST) = 0.60, URST = -0.03) is greater than expected from differences in the effective population size of haploid versus diploid loci. The high level of population subdivision across the range of the ghost bat contrasts with evidence for high gene flow in other chiropteran species and may be due to narrow physiological tolerances and consequent limited availability of roosts for ghost bats, particularly across the subtropical and relatively arid regions. This observation is consistent with the hypothesis that the contraction of the species' range is associated with late Holocene climate change. The extreme isolation among higher-latitude populations may predispose them to additional local extinctions if the processes responsible for the range contraction continue to operate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is concerned with the investigation, by nuclear magnetic resonance spectroscopy, of the molecular interactions occurring in mixtures of benzene and cyclohexane to which either chloroform or deutero-chloroform has been added. The effect of the added polar molecule on the liquid structure has been studied using spin-lattice relaxation time, 1H chemical shift, and nuclear Overhauser effect measurements. The main purpose of the work has been to validate a model for molecular interaction involving local ordering of benzene around chloroform. A chemical method for removing dissolved oxygen from samples has been developed to encompass a number of types of sample, including quantitative mixtures, and its supremacy over conventional deoxygenation technique is shown. A set of spectrometer conditions, the use of which produces the minimal variation in peak height in the steady state, is presented. To separate the general diluting effects of deutero-chloroform from its effects due to the production of local order a series of mixtures involving carbon tetrachloride, instead of deutero-chloroform, have been used as non-interacting references. The effect of molecular interaction is shown to be explainable using a solvation model, whilst an approach involving 1:1 complex formation is shown not to account for the observations. It is calculated that each solvation shell, based on deutero-chloroform, contains about twelve molecules of benzene or cyclohexane. The equations produced to account for the T1 variations have been adapted to account for the 1H chemical shift variations in the same system. The shift measurements are shown to substantiate the solvent cage model with a cage capacity of twelve molecules around each chloroform molecule. Nuclear Overhauser effect data have been analysed quantitatively in a manner consistent with the solvation model. The results show that discrete shells only exist when the mole fraction of deutero-chloroform is below about 0.08.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structure and thermal properties of yttrium alumino-phosphate glasses, of nominal composition (Y2O3)(0.31-z)(Al2O3)(z)(P2O5)(0.69) with 0 less than or similar to z less than or similar to 0.31, were studied by using a combination of neutron diffraction, Al-27 and P-31 magic angle spinning nuclear magnetic resonance, differential scanning calorimetry and thermal gravimetric analysis methods. The Vickers hardness of the glasses was also measured. The data are compared to those obtained for pseudo-binary Al2O3-P2O5 glasses and the structure of all these materials is rationalized in terms of a generic model for vitreous phosphate materials in which Y3+ and Al3+ act as modifying cations that bind only to the terminal (non-bridging) oxygen atoms of PO4 tetrahedra. The results are used to help elucidate the phenomenon of rare-earth clustering in phosphate glasses which can be reduced by substituting Al3+ ions for rare-earth R3+ ions at fixed modifier content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim was to determine the most effective calcium precursor for synthesis of sol-gel hybrids and for improving homogeneity of sol-gel bioactive glasses. Sol-gel derived bioactive calcium silicate glasses are one of the most promising materials for bone regeneration. Inorganic/organic hybrid materials, which are synthesized by incorporating a polymer into the sol-gel process, have also recently been produced to improve toughness. Calcium nitrate is conventionally used as the calcium source, but it has several disadvantages. Calcium nitrate causes inhomogeneity by forming calcium-rich regions, and it requires high temperature treatment (>400 C) for calcium to be incorporated into the silicate network. Nitrates are also toxic and need to be burnt off. Calcium nitrate therefore cannot be used in the synthesis of hybrids as the highest temperature used in the process is typically 40-60 C. Therefore, a different precursor is needed that can incorporate calcium into the silica network and enhance the homogeneity of the glasses at low (room) temperature. In this work, calcium methoxyethoxide (CME) was used to synthesize sol-gel bioactive glasses with a range of final processing temperatures from 60 to 800 C. Comparison is made between the use of CME and calcium chloride and calcium nitrate. Using advanced probe techniques, the temperature at which Ca is incorporated into the network was identified for 70S30C (70 mol % SiO, 30 mol % CaO) for each of the calcium precursors. When CaCl was used, the Ca did not seem to enter the network at any of the temperatures used. In contrast, Ca from CME entered the silica network at room temperature, as confirmed by X-ray diffraction, Si magic angle spinning nuclear magnetic resonance spectroscopy, and dissolution studies. CME should be used in preference to calcium salts for hybrid synthesis and may improve homogeneity of sol-gel glasses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rare-earth co-doping in inorganic materials has a long-held tradition of facilitating highly desirable optoelectronic properties for their application to the laser industry. This study concentrates specifically on rare-earth phosphate glasses, (R2O3)x(R'2O3)y(P2O5)1-(x+y), where (R, R') denotes (Ce, Er) or (La, Nd) co-doping and the total rare-earth composition corresponds to a range between metaphosphate, RP3O9, and ultraphosphate, RP5O14. Thereupon, the effects of rare-earth co-doping on the local structure are assessed at the atomic level. Pair-distribution function analysis of high-energy X-ray diffraction data (Qmax = 28 Å-1) is employed to make this assessment. Results reveal a stark structural invariance to rare-earth co-doping which bears testament to the open-framework and rigid nature of these glasses. A range of desirable attributes of these glasses unfold from this finding; in particular, a structural simplicity that will enable facile molecular engineering of rare-earth phosphate glasses with 'dial-up' lasing properties. When considered together with other factors, this finding also demonstrates additional prospects for these co-doped rare-earth phosphate glasses in nuclear waste storage applications. This study also reveals, for the first time, the ability to distinguish between P-O and PO bonding in these rare-earth phosphate glasses from X-ray diffraction data in a fully quantitative manner. Complementary analysis of high-energy X-ray diffraction data on single rare-earth phosphate glasses of similar rare-earth composition to the co-doped materials is also presented in this context. In a technical sense, all high-energy X-ray diffraction data on these glasses are compared with analogous low-energy diffraction data; their salient differences reveal distinct advantages of high-energy X-ray diffraction data for the study of amorphous materials. © 2013 The Owner Societies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neutron diffraction was used to measure the total structure factors for several rare-earth ion R3+ (La3+ or Ce3+) phosphate glasses with composition close to RAl0.35P3.24O10.12. By assuming isomorphic structures, difference function methods were employed to separate, essentially, those correlations involving R3+ from the remainder. A self-consistent model of the glass structure was thereby developed in which the Al correlations were taken into explicit account. The glass network was found to be made from interlinked PO4 tetrahedra having 2.2(1) terminal oxygen atoms, OT, at 1.51(1) Angstrom, and 1.8(1) bridging oxygen atoms, OB, at 1.60(1) Angstrom. Rare-earth cations bonded to an average of 7.5(2) OT nearest neighbors in a broad and asymmetric distribution. The Al3+ ion acted as a network modifier and formed OT-A1-OT linkages that helped strengthen the glass. The connectivity of the R-centered coordination polyhedra was quantified in terms of a parameter f(s) and used to develop a model for the dependence on composition of the A1-OT coordination number in R-A1-P-O glasses. By using recent 17 A1 nuclear-magnetic-resonance data, it was shown that this connectivity decreases monotonically with increasing Al content. The chemical durability of the glasses appeared to be at a maximum when the connectivity of the R-centered coordination polyhedra was at a minimum. The relation of f(s) to the glass transition temperature, Tg, was discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The need to incorporate advanced engineering tools in biology, biochemistry and medicine is in great demand. Many of the existing instruments and tools are usually expensive and require special facilities.^ With the advent of nanotechnology in the past decade, new approaches to develop devices and tools have been generated by academia and industry. ^ One such technology, NMR spectroscopy, has been used by biochemists for more than 2 decades to study the molecular structure of chemical compounds. However, NMR spectrometers are very expensive and require special laboratory rooms for their proper operation. High magnetic fields with strengths in the order of several Tesla make these instruments unaffordable to most research groups.^ This doctoral research proposes a new technology to develop NMR spectrometers that can operate at field strengths of less than 0.5 Tesla using an inexpensive permanent magnet and spin dependent nanoscale magnetic devices. This portable NMR system is intended to analyze samples as small as a few nanoliters.^ The main problem to resolve when downscaling the variables is to obtain an NMR signal with high Signal-To-Noise-Ratio (SNR). A special Tunneling Magneto-Resistive (TMR) sensor design was developed to achieve this goal. The minimum specifications for each component of the proposed NMR system were established. A complete NMR system was designed based on these minimum requirements. The goat was always to find cost effective realistic components. The novel design of the NMR system uses technologies such as Direct Digital Synthesis (DDS), Digital Signal Processing (DSP) and a special Backpropagation Neural Network that finds the best match of the NMR spectrum. The system was designed, calculated and simulated with excellent results.^ In addition, a general method to design TMR Sensors was developed. The technique was automated and a computer program was written to help the designer perform this task interactively.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chloroperoxidase (CPO) is the most versatile heme-containing enzyme that catalyzes a broad spectrum of reactions. The remarkable feature of this enzyme is the high regio- and enantio-selectivity exhibited in CPO-catalyzed oxidation reactions. The aim of this dissertation is to elucidate the structural basis for regio- and enantio-selective transformations and investigate the application of CPO in biodegradation of synthetic dyes. ^ To unravel the mechanism of CPO-catalyzed regioselective oxidation of indole, the dissertation explored the structure of CPO-indole complex using paramagnetic relaxation and molecular modeling. The distances between the protons of indole and the heme iron revealed that the pyrrole ring of indole is oriented toward the heme with its 2-H pointing directly at the heme iron. This provides the first experimental and theoretical explanation for the "unexpected" regioselectivity of CPO-catalyzed indole oxidation. Furthermore, the residues including Leu 70, Phe 103, Ile 179, Val 182, Glu 183, and Phe 186 were found essential to the substrate binding to CPO. These results will serve as a lighthouse in guiding the design of CPO mutants with tailor-made activities for biotechnological applications. ^ To understand the origin of the enantioselectivity of CPO-catalyzed oxidation reactions, the interactions of CPO with substrates such as 2-(methylthio)thiophene were investigated by nuclear magnetic resonance spectroscopy (NMR) and computational techniques. In particular, the enantioselectivity is partly explained by the binding orientation of substrates. In third facet of this dissertation, a green and efficient system for degradation of synthetic dyes was developed. Several commercial dyes such as orange G were tested in the CPO-H2O 2-Cl- system, where degradation of these dyes was found very efficient. The presence of halide ions and acidic pH were found necessary to the decomposition of dyes. Significantly, the results revealed that this degradation of azo dyes involves a ferric hypochlorite intermediate of CPO (Fe-OCl), compound X.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chitosan gel films were successfully obtained by evaporation cast from chitosan solutions in aqueous acidic solutions of organic acids (lactic and acetic acid) as gel film bandages, with a range of additives that directly influence film morphology and porosity. We show that the structure and composition of a wide range of 128 thin gel films, is correlated to the antimicrobial properties, their biocompatibility and resistance to biodegradation. Infrared spectroscopy and solid-state 13C nuclear magnetic resonance spectroscopy was used to correlate film molecular structure and composition to good antimicrobial properties against 10 of the most prevalent Gram positive and Gram negative bacteria. Chitosan gel films reduce the number of colonies after 24 h of incubation by factors of ∼105–107 CFU/mL, compared with controls. For each of these films, the structure and preparation condition has a direct relationship to antimicrobial activity and effectiveness. These gel film bandages also show excellent stability against biodegradation with lysozyme under physiological conditions (5% weight loss over a period of 1 month, 2% in the first week), allowing use during the entire healing process. These chitosan thin films and subsequent derivatives hold potential as low-cost, dissolvable bandages, or second skin, with antimicrobial properties that prohibit the most relevant intrahospital bacteria that infest burn injuries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experiments at Jefferson Lab have been conducted to extract the nucleon spin-dependent structure functions over a wide kinematic range. Higher moments of these quantities provide tests of QCD sum rules and predictions of chiral perturbation theory ($\chi$PT). While precise measurements of $g_{1}^n$, $g_{2}^n$, and $g_1^p$ have been extensively performed, the data of $g_2^p$ remain scarce. Discrepancies were found between existing data related to $g_2$ and theoretical predictions. Results on the proton at large $Q^2$ show a significant deviation from the Burkhardt-Cottingham sum rule, while results for the neutron generally follow this sum rule. The next-to-leading order $\chi$PT calculations exhibit discrepancy with data on the longitudinal-transverse polarizability $\delta_{LT}^n$. Further measurements of the proton spin structure function $g_2^p$ are desired to understand these discrepancies.

Experiment E08-027 (g2p) was conducted at Jefferson Lab in experimental Hall A in 2012. Inclusive measurements were performed with polarized electron beam and a polarized ammonia target to obtain the proton spin-dependent structure function $g_2^p$ at low Q$^2$ region (0.02$<$Q$^2$$<$0.2 GeV$^2$) for the first time. The results can be used to test the Burkhardt-Cottingham sum rule, and also allow us to extract the longitudinal-transverse spin polarizability of the proton, which will provide a benchmark test of $\chi$PT calculations. This thesis will present and discuss the very preliminary results of the transverse asymmetry and the spin-dependent structure functions $g_1^p$ and $g_2^p$ from the data analysis of the g2p experiment .

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The HIV-1 genome contains several genes coding for auxiliary proteins, including the small Vpr protein. Vpr affects the integrity of the nuclear envelope and participates in the nuclear translocation of the preintegration complex containing the viral DNA. Here, we show by photobleaching experiments performed on living cells expressing a Vpr-green fluorescent protein fusion that the protein shuttles between the nucleus and the cytoplasm, but a significant fraction is concentrated at the nuclear envelope, supporting the hypothesis that Vpr interacts with components of the nuclear pore complex. An interaction between HIV-1 Vpr and the human nucleoporin CG1 (hCG1) was revealed in the yeast two-hybrid system, and then confirmed both in vitro and in transfected cells. This interaction does not involve the FG repeat domain of hCG1 but rather the N-terminal region of the protein. Using a nuclear import assay based on digitonin-permeabilized cells, we demonstrate that hCG1 participates in the docking of Vpr at the nuclear envelope. This association of Vpr with a component of the nuclear pore complex may contribute to the disruption of the nuclear envelope and to the nuclear import of the viral DNA.