954 resultados para nuclear potential energy surface
Resumo:
Material potential energy is well approximated by '' pair-functional '' potentials. During calculating potential energy, the orientational and volumetric components have been derived from pair potentials and embedding energy, respectively. Slip results in plastic deformation, and slip component has been proposed accordingly. Material is treated as a component assembly, and its elastic, plastic and damage properties are reflected by different components respectively. Material constitutive relations are formed by means of assembling these three kinds of components. Anisotropy has been incorporated intrinsically via the concept of component. Theoretical and numerical results indicate that this method has the capacity of reproducing some results satisfactorily, with the advantages of physical explicitness, etc. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Methane hydrate, which is usually found under deep seabed or permafrost zones, is a potential energy resource for future years. Depressurization of horizontal wells bored in methane hydrate layer is considered as one possible method for hydrate dissociation and methane extraction from the hosting soil. Since hydrate is likely to behave as a bonding material to sandy soils, supported well construction is necessary to avoid well-collapse due to the loss of the apparent cohesion during depressurization. This paper describes both physical and numerical modeling of such horizontal support wells. The experimental part involves depressurization of small well models in a large pressure cell, while the numerical part simulates the corresponding problem. While the experiment models simulate only gas saturated initial conditions, the numerical analysis simulates both gas-saturated and more realistic water-saturated conditions based on effective stress coupled flow-deformation formulation of these three phases. © 2006 Taylor & Francis Group.
Resumo:
A systematic study on the available data of 26 metallic glasses shows that there is an intrinsic correlation between fragility of a liquid and bulk modulus of its glass. The underlying physics can be rationalized within the formalism of potential energy landscape thermodynamics. It is surprising to find that the linear correlation between the fragility and the bulk-shear modulus ratio exists strictly at either absolute zero temperature or very high frequency. Further analyses indicate that a real flow event in bulk metallic glasses is shear dominant, and fragility is in inverse proportion to shear-induced bulk dilatation. Finally, extension of these findings to nonmetallic glasses is discussed.
Resumo:
The potential energy in materials is well approximated by pair functional which is composed of pair potentials and embedding energy. During calculating material potential energy, the orientational component and the volumetric component are derived respectively from pair potentials and embedding energy. The sum of energy of all these two kinds of components is the material potential. No matter how microstructures change, damage or fracture, at the most level, they are all the changing and breaking atomic bonds. As an abstract of atomic bonds, these components change their stiffness during damaging. Material constitutive equations have been formulated by means of assembling all components' response functions. This material model is called the component assembling model. Theoretical analysis and numerical computing indicate that the proposed model has the capacity of reproducing some results satisfactorily, with the advantages of great conceptual simplicity, physical explicitness, and intrinsic induced anisotropy, etc.
Resumo:
Strong mechanical forces can, obviously, disrupt cell-cell and cell-matrix adhesions, e.g., cyclic uniaxial stretch induces instability of cell adhesion, which then causes the reorientation of cells away from the stretching direction. However, recent experiments also demonstrated the existence of force dependent adhesion growth (rather than dissociation). To provide a quantitative explanation for the two seemingly contradictory phenomena, a microscopic model that includes both integrin-integrin interaction and integrin-ligand interaction is developed at molecular level by treating the focal adhesion as an adhesion cluster. The integrin clustering dynamics and integrin-ligand binding dynamics are then simulated within one unified theoretical frame with Monte Carlo simulation. We find that the focal adhesion will grow when the traction force is higher than a relative small threshold value, and the growth is dominated by the reduction of local chemical potential energy by the traction force. In contrast, the focal adhesion will rupture when the traction force exceeds a second threshold value, and the rupture is dominated by the breaking of integrin-ligand bonds. Consistent with the experiments, these results suggest a force map for various responses of cell adhesion to different scales of mechanical force. PMID: 20542514
Resumo:
The nonlinear partial differential equations for dispersive waves have special solutions representing uniform wavetrains. An expansion procedure is developed for slowly varying wavetrains, in which full nonlinearity is retained but in which the scale of the nonuniformity introduces a small parameter. The first order results agree with the results that Whitham obtained by averaging methods. The perturbation method provides a detailed description and deeper understanding, as well as a consistent development to higher approximations. This method for treating partial differential equations is analogous to the "multiple time scale" methods for ordinary differential equations in nonlinear vibration theory. It may also be regarded as a generalization of geometrical optics to nonlinear problems.
To apply the expansion method to the classical water wave problem, it is crucial to find an appropriate variational principle. It was found in the present investigation that a Lagrangian function equal to the pressure yields the full set of equations of motion for the problem. After this result is derived, the Lagrangian is compared with the more usual expression formed from kinetic minus potential energy. The water wave problem is then examined by means of the expansion procedure.
Resumo:
The field of cavity-optomechanics explores the interaction of light with sound in an ever increasing array of devices. This interaction allows the mechanical system to be both sensed and controlled by the optical system, opening up a wide variety of experiments including the cooling of the mechanical resonator to its quantum mechanical ground state and the squeezing of the optical field upon interaction with the mechanical resonator, to name two.
In this work we explore two very different systems with different types of optomechanical coupling. The first system consists of two microdisk optical resonators stacked on top of each other and separated by a very small slot. The interaction of the disks causes their optical resonance frequencies to be extremely sensitive to the gap between the disks. By careful control of the gap between the disks, the optomechanical coupling can be made to be quadratic to first order which is uncommon in optomechanical systems. With this quadratic coupling the light field is now sensitive to the energy of the mechanical resonator and can directly control the potential energy trapping the mechanical motion. This ability to directly control the spring constant without modifying the energy of the mechanical system, unlike in linear optomechanical coupling, is explored.
Next, the bulk of this thesis deals with a high mechanical frequency optomechanical crystal which is used to coherently convert photons between different frequencies. This is accomplished via the engineered linear optomechanical coupling in these devices. Both classical and quantum systems utilize the interaction of light and matter across a wide range of energies. These systems are often not naturally compatible with one another and require a means of converting photons of dissimilar wavelengths to combine and exploit their different strengths. Here we theoretically propose and experimentally demonstrate coherent wavelength conversion of optical photons using photon-phonon translation in a cavity-optomechanical system. For an engineered silicon optomechanical crystal nanocavity supporting a 4 GHz localized phonon mode, optical signals in a 1.5 MHz bandwidth are coherently converted over a 11.2 THz frequency span between one cavity mode at wavelength 1460 nm and a second cavity mode at 1545 nm with a 93% internal (2% external) peak efficiency. The thermal and quantum limiting noise involved in the conversion process is also analyzed and, in terms of an equivalent photon number signal level, are found to correspond to an internal noise level of only 6 and 4 times 10x^-3 quanta, respectively.
We begin by developing the requisite theoretical background to describe the system. A significant amount of time is then spent describing the fabrication of these silicon nanobeams, with an emphasis on understanding the specifics and motivation. The experimental demonstration of wavelength conversion is then described and analyzed. It is determined that the method of getting photons into the cavity and collected from the cavity is a fundamental limiting factor in the overall efficiency. Finally, a new coupling scheme is designed, fabricated, and tested that provides a means of coupling greater than 90% of photons into and out of the cavity, addressing one of the largest obstacles with the initial wavelength conversion experiment.
Resumo:
The Madden-Julian Oscillation (MJO) is a pattern of intense rainfall and associated planetary-scale circulations in the tropical atmosphere, with a recurrence interval of 30-90 days. Although the MJO was first discovered 40 years ago, it is still a challenge to simulate the MJO in general circulation models (GCMs), and even with simple models it is difficult to agree on the basic mechanisms. This deficiency is mainly due to our poor understanding of moist convection—deep cumulus clouds and thunderstorms, which occur at scales that are smaller than the resolution elements of the GCMs. Moist convection is the most important mechanism for transporting energy from the ocean to the atmosphere. Success in simulating the MJO will improve our understanding of moist convection and thereby improve weather and climate forecasting.
We address this fundamental subject by analyzing observational datasets, constructing a hierarchy of numerical models, and developing theories. Parameters of the models are taken from observation, and the simulated MJO fits the data without further adjustments. The major findings include: 1) the MJO may be an ensemble of convection events linked together by small-scale high-frequency inertia-gravity waves; 2) the eastward propagation of the MJO is determined by the difference between the eastward and westward phase speeds of the waves; 3) the planetary scale of the MJO is the length over which temperature anomalies can be effectively smoothed by gravity waves; 4) the strength of the MJO increases with the typical strength of convection, which increases in a warming climate; 5) the horizontal scale of the MJO increases with the spatial frequency of convection; and 6) triggered convection, where potential energy accumulates until a threshold is reached, is important in simulating the MJO. Our findings challenge previous paradigms, which consider the MJO as a large-scale mode, and point to ways for improving the climate models.
Resumo:
利用一简单的经典静电模型研究了甲烷团簇纯库仑爆炸情况下产生的离子平均动能。研究表明,甲烷团簇爆炸后离子获得的平均动能和离子的初始平均静电势能的比值,与团簇的尺寸大小无关。这意味着在甲烷团簇纯库仑爆炸近似下,不必使用分子动力学模拟,离子获得的动能可以通过这一比值以及离子的初始静电势能进行估算。给出了不同碳离子价态下的离子平均动能和其初始平均静电势能的比值。
Resumo:
This is a two-part thesis concerning the motion of a test particle in a bath. In part one we use an expansion of the operator PLeit(1-P)LLP to shape the Zwanzig equation into a generalized Fokker-Planck equation which involves a diffusion tensor depending on the test particle's momentum and the time.
In part two the resultant equation is studied in some detail for the case of test particle motion in a weakly coupled Lorentz Gas. The diffusion tensor for this system is considered. Some of its properties are calculated; it is computed explicitly for the case of a Gaussian potential of interaction.
The equation for the test particle distribution function can be put into the form of an inhomogeneous Schroedinger equation. The term corresponding to the potential energy in the Schroedinger equation is considered. Its structure is studied, and some of its simplest features are used to find the Green's function in the limiting situations of low density and long time.
Resumo:
Em anos recentes, a temática energética vem sendo objeto de barganhas políticas e econômicas na América do Sul. O presente trabalho visou a trazer tal temática para as Relações Internacionais, no âmbito da Integração Regional, com ênfase no papel do Brasil em suas relações internacionais com os vizinhos sul-americanos, no recorte temporal 2000-2010. Argumentou-se que o Brasil vem buscando a integração energética relacionada à infraestrutura na América do Sul com vistas à promoção do seu desenvolvimento. O desenvolvimento regional está conectado com o nacional. O Brasil também teve como objetivo garantir a estabilidade regional. Trabalhou-se com o conceito de integração energética definido como a constituição de ativos comuns permanentes entre os países. Ademais, as iniciativas dos processos integracionistas em energia foram analisadas com foco na IIRSA, iniciativa até então inédita. Posteriormente, a IIRSA foi reestruturada e incorporada à UNASUL e um novo e exclusivo Conselho para assuntos energéticos foi criado. A OLADE e o MERCOSUL também entraram no debate, de forma breve, a fim de contextualizar a energia como fator vital para o desenvolvimento regional antes dos anos 2000. Os setores potenciais para a integração energética sul-americana foram os de gás natural e hidroeletricidade com base na definição proposta na presente pesquisa.
Resumo:
本文以葡甘聚糖为试材,运用分子模拟同仪器分析相结合的手段,预测了葡甘聚糖分子链的高级结构,分析了无机分子对其结构、性能的影响,探讨了葡甘聚糖与卡拉胶微观作用机理。 主要研究内容与结果如下: 1. 葡甘聚糖单链高级结构的预测 利用Hyperchem7.0、VM2.0分子结构计算软件采用分子动力学和分子力学的方法,以真空中葡甘聚糖单链为研究模型,研究了聚合度、取代基对动态构象的影响及影响链构象的作用力。首次提出了KGM链的动态模型,得到了以下结果:聚合度影响其链形态和稳定性,对于高聚合度的魔芋葡甘聚糖来说,其链呈现无规卷曲状态且稳定性下降,在整个动态运动过程中KGM链脱乙酰基前后都呈现无规卷曲状态,而且其伸展和卷曲的变化是周期性的,表现出了很好的柔性,说明乙酰基不是影响其链形态的主要因素,二面角能和静电作用是真空中影响单链构象的主要的键合作用力和非键合作用力,但是乙酰基对氢键作用的影响较大。 2. 无机分子对葡甘聚糖溶液体系结构性能影响的研究 利用Hyperchem7.0分子结构计算软件,采用分子动力学及红外光谱、核磁共振等技术,对无机分子对葡甘聚糖体系的影响进行分析,很好的解释了性能变化的结构原因,结合以往的研究及参考文献得出以下结论:KGM在碱性条件下由于化学作用乙酰基的脱除分子间氢键作用的加强提高了凝胶强度,分子间氢键的主要作用位点是葡萄糖 的O(6)与甘露糖的O(2)之间;硼与KGM形成的分子内和分子间配合作用及分子间作用力氢键的增强是KGM特性粘度和致密性提高的主要原因,分子间型配位反应发生在葡萄糖和甘露糖两个糖环之间的几率最大;加入尿素后,表现为宏观性能的下降,葡甘聚糖氢键网络被破坏,氢键的作用位点由甘露糖的O(2)、O(3)变为O(4),葡萄糖的O(3)、O(6)变为O(1)、O(2)。 3. 葡甘聚糖与卡拉胶共混作用的研究 利用Hyperchem7.0分子结构计算软件运用分子动力学方法、DSC、红外光谱技术,研究了葡甘聚糖与卡拉胶的微观结构及作用过程,揭示了性能变化的结构原因和分子之间的作用位点。得出了以下结论:葡甘聚糖同卡拉胶共混后通过分子间氢键作用形成了强度高、弹性好的热可逆凝胶。其凝胶强度与单一胶相比较,凝胶特性得到了很大的改善。通过红外光谱可以发现形成复合溶胶后化学基团没有发生本质上的改变,但是氢键缔合作用增强;通过DSC分析可以发现仅出现1个吸热峰,两种生物大分子达到了相容的结果,经过分子动力学模拟表明,与单一体系比较,葡甘聚糖与卡拉胶共混时稳定性提高,分子间氢键作用力明显增强,主要的作用位点是葡甘聚糖的上甘露糖的O(2)、O(4)、O(6)、乙酰基位置及卡拉胶上糖环上的 O(6)、硫酸基。
Resumo:
Previous research has shown that hydraulic systems offer potentially the lightest and smallest regenerative braking technology for heavy goods vehicles. This paper takes the most practical embodiment of a hydraulic system for an articulated urban delivery vehicle and investigates the best specification for the various components, based on a simulated stop-start cycle. The potential energy saving is quantified. © 2011 IEEE.
Resumo:
Methane hydrate, which is usually found under deep seabed or permafrost zones, is a potential energy resource for future years. Depressurization of horizontalwells bored in methane hydrate layer is considered as one possible method for hydrate dissociation and methane extraction from the hosting soil. Since hydrate is likely to behave as a bonding material to sandy soils, supported well construction is necessary to avoid wellcollapse due to the loss of the apparent cohesion during depressurization. This paper describes both physical and numerical modeling of such horizontal support wells. The experimental part involves depressurization of small well models in a large pressure cell, while the numerical part simulates the corresponding problem. While the experiment models simulate only gas saturated initial conditions, the numerical analysis simulates both gas-saturated and more realistic water-saturated conditions based on effective stress coupled flow-deformation formulation of these three phases. © 2006 Taylor & Francis Group, London.
Resumo:
Recent studies have demonstrated a role for the elastic protein titin in active muscle, but the mechanisms by which titin plays this role remain to be elucidated. In active muscle, Ca(2+)-binding has been shown to increase titin stiffness, but the observed increase is too small to explain the increased stiffness of parallel elastic elements upon muscle activation. We propose a 'winding filament' mechanism for titin's role in active muscle. First, we hypothesize that Ca(2+)-dependent binding of titin's N2A region to thin filaments increases titin stiffness by preventing low-force straightening of proximal immunoglobulin domains that occurs during passive stretch. This mechanism explains the difference in length dependence of force between skeletal myofibrils and cardiac myocytes. Second, we hypothesize that cross-bridges serve not only as motors that pull thin filaments towards the M-line, but also as rotors that wind titin on the thin filaments, storing elastic potential energy in PEVK during force development and active stretch. Energy stored during force development can be recovered during active shortening. The winding filament hypothesis accounts for force enhancement during stretch and force depression during shortening, and provides testable predictions that will encourage new directions for research on mechanisms of muscle contraction.