973 resultados para nuclear gene


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bloom syndrome (BS) is a rare cancer-predisposing disorder in which the cells of affected persons have a high frequency of somatic mutation and genomic instability. BLM, the protein altered in BS, is a RecQ DNA helicase. This report shows that BLM is found in the nucleus of normal human cells in the nuclear domain 10 or promyelocytic leukemia nuclear bodies. These structures are punctate depots of proteins disrupted upon viral infection and in certain human malignancies. BLM is found primarily in nuclear domain 10 except during S phase when it colocalizes with the Werner syndrome gene product, WRN, in the nucleolus. BLM colocalizes with a select subset of telomeres in normal cells and with large telomeric clusters seen in simian virus 40-transformed normal fibroblasts. During S phase, BS cells expel micronuclei containing sites of DNA synthesis. BLM is likely to be part of a DNA surveillance mechanism operating during S phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rd7 mouse, an animal model for hereditary retinal degeneration, has some characteristics similar to human flecked retinal disorders. Here we report the identification of a deletion in a photoreceptor-specific nuclear receptor (mPNR) mRNA that is responsible for hereditary retinal dysplasia and degeneration in the rd7 mouse. mPNR was isolated from a pool of photoreceptor-specific cDNAs originally created by subtractive hybridization of mRNAs from normal and photoreceptorless rd mouse retinas. Localization of the gene corresponding to mPNR to mouse Chr 9 near the rd7 locus made it a candidate for the site of the rd7 mutation. Northern analysis of total RNA isolated from rd7 mouse retinas revealed no detectable signal after hybridization with the mPNR cDNA probe. However, with reverse transcription–PCR, we were able to amplify different fragments of mPNR from rd7 retinal RNA and to sequence them directly. We found a 380-nt deletion in the coding region of the rd7 mPNR message that creates a frame shift and produces a premature stop codon. This deletion accounts for more than 32% of the normal protein and eliminates a portion of the DNA-binding domain. In addition, it may result in the rapid degradation of the rd7 mPNR message by the nonsense-mediated decay pathway, preventing the synthesis of the corresponding protein. Our findings demonstrate that mPNR expression is critical for the normal development and function of the photoreceptor cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photoreceptors of the Xenopus laevis retina are the site of a circadian clock. As part of a differential display screen for rhythmic gene products in this system, we have identified a photoreceptor-specific mRNA expressed in peak abundance at night. cDNA cloning revealed an open reading frame encoding a putative 388 amino acid protein that we have named “nocturnin” (for night-factor). This protein has strong sequence similarity to the C-terminal domain of the yeast transcription factor, CCR4, as well as a leucine zipper-like dimerization motif. Nocturnin mRNA levels exhibit a high amplitude circadian rhythm and nuclear run-on analysis indicates that it is controlled by the retinal circadian clock at the level of transcription. Our observations suggest that nocturnin may function through protein–protein interaction either as a component of the circadian clock or as a downstream effector of clock function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Twenty-four base pairs of the human antioxidant response element (hARE) are required for high basal transcription of the NAD(P)H:quinone oxidoreductase1 (NQO1) gene and its induction in response to xenobiotics and antioxidants. hARE is a unique cis-element that contains one perfect and one imperfect AP1 element arranged as inverse repeats separated by 3 bp, followed by a “GC” box. We report here that Jun, Fos, Fra, and Nrf nuclear transcription factors bind to the hARE. Overexpression of cDNA derived combinations of the nuclear proteins Jun and Fos or Jun and Fra1 repressed hARE-mediated chloramphenicol acetyltransferase (CAT) gene expression in transfected human hepatoblastoma (Hep-G2) cells. Further experiments suggested that this repression was due to overexpression of c-Fos and Fra1, but not due to Jun proteins. The Jun (c-Jun, Jun-B, and Jun-D) proteins in all the possible combinations were more or less ineffective in repression or upregulation of hARE-mediated gene expression. Interestingly, overexpression of Nrf1 and Nrf2 individually in Hep-G2 and monkey kidney (COS1) cells significantly increased CAT gene expression from reporter plasmid hARE-thymidine kinase-CAT in transfected cells that were inducible by β-naphthoflavone and tert-butyl hydroquinone. These results indicated that hARE-mediated expression of the NQO1 gene and its induction by xenobiotics and antioxidants are mediated by Nrf1 and Nrf2. The hARE-mediated basal expression, however, is repressed by overexpression of c-Fos and Fra1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a method for identifying genes encoding proteins with stereospecific intracellular localizations in the fission yeast Schizosaccharomyces pombe. Yeast are transformed with a gene library in which S. pombe genomic sequences are fused to the gene encoding the Aequorea victoria green fluorescent protein (GFP), and intracellular localizations are subsequently identified by rapid fluorescence screening in vivo. In a model application of these methods to the fission yeast nucleus, we have identified several novel genes whose products are found in specific nuclear regions, including chromatin, the nucleolus, and the mitotic spindle, and sequence similarities between some of these genes and previously identified genes encoding nuclear proteins have validated the approach. These methods will be useful in identifying additional components of the S. pombe nucleus, and further extensions of this approach should also be applicable to a more comprehensive identification of the elements of intracellular architecture in fission yeast.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The activation of the silent endogenous progesterone receptor (PR) gene by 17-β-estradiol (E2) in cells stably transfected with estrogen receptor (ER) was used as a model system to study the mechanism of E2-induced transcription. The time course of E2-induced PR transcription rate was determined by nuclear run-on assays. No marked effect on specific PR gene transcription rates was detected at 0 and 1 h of E2 treatment. After 3 h of E2 treatment, the PR mRNA synthesis rate increased 2.0- ± 0.2-fold and continued to increase to 3.5- ± 0.4-fold by 24 h as compared with 0 h. The transcription rate increase was followed by PR mRNA accumulation. No PR mRNA was detectable at 0, 1, and 3 h of E2 treatment. PR mRNA accumulation was detected at 6 h of E2 treatment and continued to accumulate until 18 h, the longest time point examined. Interestingly, this slow and gradual transcription rate increase of the endogenous PR gene did not parallel binding of E2 to ER, which was maximized within 30 min. Furthermore, the E2–ER level was down-regulated to 15% at 3 h as compared with 30 min of E2 treatment and remained low at 24 h of E2 exposure. These paradoxical observations indicate that E2-induced transcription activation is more complicated than just an association of the occupied ER with the transcription machinery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

LXRα is a member of a nuclear receptor superfamily that regulates transcription. LXRα forms a heterodimer with RXRα, another member of this family, to regulate the expression of cholesterol 7α-hydroxylase by means of binding to the DR4-type cis-element. Here, we describe a function for LXRα as a cAMP-responsive regulator of renin and c-myc gene transcriptions by the interaction with a specific cis-acting DNA element, CNRE (an overlapping cAMP response element and a negative response element). Our previous studies showed that renin gene expression is regulated by cAMP, at least partly, through the CNRE sequence in its 5′-flanking region. This sequence is also found in c-myc and several other genes. Based on our cloning results using the yeast one-hybrid system, we discovered that the mouse homologue of human LXRα binds to the CNRE and demonstrated that it binds as a monomer. To define the function of LXRα on gene expression, we transfected the renin-producing renal As4.1 cells with LXRα expression plasmid. Overexpression of LXRα in As4.1 cells confers cAMP inducibility to reporter constructs containing the renin CNRE. After stable transfection of LXRα, As4.1 cells show a cAMP-inducible up-regulation of renin mRNA expression. In parallel experiments, we demonstrated that LXRα can also bind to the homologous CNRE in the c-myc promoter. cAMP promotes transcription through c-myc/CNRE:LXRα interaction in LXRα transiently transfected cells and increases c-myc mRNA expression in stably transfected cells. Identification of LXRα as a cAMP-responsive nuclear modulator of renin and c-myc expression not only has cardiovascular significance but may have generalized implication in the regulation of gene transcription.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sodium/iodide symporter (NIS) stimulates iodide uptake in normal lactating breast, but is not known to be active in nonlactating breast or breast cancer. We studied NIS gene regulation and iodide uptake in MCF-7 cells, an estrogen receptor (ER)-positive human breast cancer cell line. All-trans retinoic acid (tRA) treatment stimulated iodide uptake in a time- and dose-dependent fashion up to ≈9.4-fold above baseline. Stimulation with selective retinoid compounds indicated that the induction of iodide uptake was mediated by retinoic acid receptor. Treatment with tRA markedly stimulated NIS mRNA and immunoreactive protein (≈68 kDa). tRA stimulated NIS gene transcription ≈4-fold, as shown by nuclear run-on assay. No induction of iodide uptake was observed with RA treatment of an ER-negative human breast cancer cell line, MDA-MB 231, or a normal human breast cell line, MCF-12A. The iodide efflux rate of tRA-treated MCF-7 cells was slow (t1/2 = 24 min), compared with that in FRTL-5 thyroid cells (t1/2 = 3.9 min), favoring iodide retention in MCF-7 cells. An in vitro clonogenic assay demonstrated selective cytotoxicity with 131I after tRA stimulation of MCF-7 cells. tRA up-regulates NIS gene expression and iodide uptake in an ER-positive breast cancer cell line. Stimulation of radioiodide uptake after systemic retinoid treatment may be useful for diagnosis and treatment of some differentiated breast cancers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The functional role of the interaction between c-Jun and simian virus 40 promoter factor 1 (Sp1) in epidermal growth factor (EGF)-induced expression of 12(S)-lipoxygenase gene in human epidermoid carcinoma A431 cells was studied. Coimmunoprecipitation experiments indicated that EGF stimulated interaction between c-Jun and Sp1 in a time-dependent manner. Overexpression of Ha-ras and c-Jun also enhanced the amount of c-Jun binding to Sp1. In addition, the c-Jun dominant negative mutant TAM-67 not only inhibited the coimmunoprecipitated c-Jun binding to Sp1 in a dose-dependent manner in cells overexpressing c-Jun but also reduced promoter activity of the 12(S)-lipoxygenase gene induced by c-Jun overexpression. Treatment of cells with EGF increased the interaction between the Sp1 oligonucleotide and nuclear c-Jun/Sp1 in a time-dependent manner. Furthermore, EGF activated the chimeric promoter consisting of 10 tandem GAL4-binding sites, which replaced the three Sp1-binding sites in the 12(S)lipoxygenase promoter only when coexpressed with GAL4-c-Jun () fusion proteins. These results indicate that the direct interaction between c-Jun and Sp1 induced by EGF cooperatively activated expression of the 12(S)-lipoxygenase gene, and that Sp1 may serve at least in part as a carrier bringing c-Jun to the promoter, thus transactivating the transcriptional activity of 12(S)-lipoxygenase gene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nuclear receptors constitute a large family of ligand-modulated transcription factors that mediate cellular responses to small lipophilic molecules, including steroids, retinoids, fatty acids, and exogenous ligands. Orphan nuclear receptors with no known endogenous ligands have been discovered to regulate drug-mediated induction of cytochromes P450 (CYP), the major drug-metabolizing enzymes. Here, we report the cloning of an orphan nuclear receptor from chicken, termed chicken xenobiotic receptor (CXR), that is closely related to two mammalian xenobiotic-activated receptors, the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR). Expression of CXR is restricted to tissues where drug induction of CYPs predominantly occurs, namely liver, kidney, small intestine, and colon. Furthermore, CXR binds to a previously identified phenobarbital-responsive enhancer unit (PBRU) in the 5′-flanking region of the chicken CYP2H1 gene. A variety of drugs, steroids, and chemicals activate CXR in CV-1 monkey cell transactivation assays. The same agents induce PBRU-dependent reporter gene expression and CYP2H1 transcription in a chicken hepatoma cell line. These results provide convincing evidence for a major role of CXR in the regulation of CYP2H1 and add a member to the family of xenobiotic-activated orphan nuclear receptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The E-26 transforming specific (ETS)-related gene, TEL, also known as ETV6, encodes a strong transcription repressor that is rearranged in several recurring chromosomal rearrangements associated with leukemia and congenital fibrosarcoma. TEL is a nuclear phosphoprotein that is widely expressed in all normal tissues. TEL contains a DNA-binding domain at the C terminus and a helix–loop–helix domain (also called a pointed domain) at the N terminus. The pointed domain is necessary for homotypic dimerization and for interaction with the ubiquitin-conjugating enzyme UBC9. Here we show that the interaction with UBC9 leads to modification of TEL by conjugating it to SUMO-1. The SUMO-1-modified TEL localizes to cell-cycle-specific nuclear speckles that we named TEL bodies. We also show that the leukemia-associated fusion protein TEL/AML1 is modified by SUMO-1 and found in the TEL bodies, in a pattern quite different from what we observe and report for AML1. Therefore, SUMO-1 modification of TEL could be a critical signal necessary for normal functioning of the protein. In addition, the modification by SUMO-1 of TEL/AML1 could lead to abnormal localization of the fusion protein, which could have consequences that include contribution to neoplastic transformation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The A mating type genes of the mushroom Coprinus cinereus encode two families of dissimilar homeodomain proteins (HD1 and HD2). The proteins heterodimerize when mating cells fuse to generate a transcriptional regulator that promotes expression of genes required for early steps in sexual development. In previous work we showed that heterodimerization brings together different functional domains of the HD1 and HD2 proteins; a potential activation domain at the C terminus of the HD1 protein and an essential HD2 DNA-binding motif. Two predicted nuclear localization signals (NLS) are present in the HD1 protein but none are in the HD2 protein. We deleted each NLS separately from an HD1 protein and showed that one (NLS1) is essential for normal heterodimer function. Fusion of the NLS sequences to the C terminus of an HD2 protein compensated for their deletion from the HD1 protein partner and permitted the two modified proteins to form a functional transcriptional regulator. The nuclear targeting properties of the A protein NLS sequences were demonstrated by fusing the region that encodes them to the bacterial uidA (β-glucuronidase) gene and showing that β-glucuronidase expression localized to the nuclei of onion epidermal cells. These observations lead to the proposal that heterodimerization regulates entry of the active transcription factor complex to the nucleus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In plants, sugar feedback regulation provides a mechanism for control of carbohydrate allocation and utilization among tissues and organs. The sugar repression of α-amylase gene expression in rice provides an ideal model for studying the mechanism of sugar feedback regulation. We have shown previously that sugar repression of α-amylase gene expression in rice suspension cells involves control of both transcription rate and mRNA stability. The α-amylase mRNA is significantly more stable in sucrose-starved cells than in sucrose-provided cells. To elucidate the mechanism of sugar-dependent mRNA turnover, we have examined the effect of αAmy3 3′ untranslated region (UTR) on mRNA stability by functional analyses in transformed rice suspension cells. We found that the entire αAmy3 3′ UTR and two of its subdomains can independently mediate sugar-dependent repression of reporter mRNA accumulation. Analysis of reporter mRNA half-lives demonstrated that the entire αAmy3 3′ UTR and the two subdomains each functioned as a sugar-dependent destabilizing determinant in the turnover of mRNA. Nuclear run-on transcription analysis further confirmed that the αAmy3 3′ UTR and the two subdomains did not affect the transcription rate of promoter. The identification of sequence elements in the α-amylase mRNA that dictate the differential stability has very important implications for the study of sugar-dependent mRNA decay mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] are mediated by the vitamin D receptor (VDR), a member of the nuclear receptor superfamily of transcriptional regulators. We have identified upstream exons of the human (h) VDR gene that are incorporated into variant transcripts, two of which encode N-terminal variant receptor proteins. Expression of the hVDR gene, which spans more than 60 kb and consists of at least 14 exons, is directed by two distinct promoters. A tissue-specific distal promoter generates unique transcripts in tissues involved in calcium regulation by 1,25-(OH)2D3 and can direct the expression of a luciferase reporter gene in a cell line-specific manner. These major N-terminal differences in hVDR transcripts, potentially resulting in structural differences in the expressed receptor, may contribute to cellular responsiveness to 1,25-(OH)2D3 through tissue differences in the regulation of VDR expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herpesviruses exist in two states, latency and a lytic productive cycle. Here we identify an immediate-early gene encoded by Kaposi’s sarcoma-associated herpesvirus (KSHV)/human herpesvirus eight (HHV8) that activates lytic cycle gene expression from the latent viral genome. The gene is a homologue of Rta, a transcriptional activator encoded by Epstein–Barr virus (EBV). KSHV/Rta activated KSHV early lytic genes, including virus-encoded interleukin 6 and polyadenylated nuclear RNA, and a late gene, small viral capsid antigen. In cells dually infected with Epstein–Barr virus and KSHV, each Rta activated only autologous lytic cycle genes. Expression of viral cytokines under control of the KSHV/Rta gene is likely to contribute to the pathogenesis of KSHV-associated diseases.