937 resultados para norepinephrine uptake
Resumo:
The role of sympathetic innervation in regulation of thyroid function is incompletely understood. We, therefore, carried out studies in rats utilizing techniques of norepinephrine turnover to assess thyroid sympathetic activity in vivo. Thyroidal sympathetic activity was increased 95% by exposure to cold (4 degrees C), 42% by chronic ingestion of an iodine-deficient diet, and 32% in rats fed a goitrogenic diet (low-iodine diet supplemented with propylthiouracil). In addition, fasting for 2 days reduced sympathetic nervous system activity in thyroid by 38%. Thyroid growth and 125I uptake were also compared in intact and decentralized hemithyroids obtained from animals subjected to unilateral superior cervical ganglion decentralization. Unilateral superior cervical ganglion decentralization led to a reduction in thyroid weight, in 125I uptake by thyroid tissue, and in TSH-induced stimulation of 125I uptake in decentralized hemithyroids. These results suggest that sympathetic activity in thyroid contributes to gland enlargement and may modulate tissue responsiveness to TSH.
Resumo:
ABSTRACT: INTRODUCTION: Low blood pressure, inadequate tissue oxygen delivery and mitochondrial dysfunction have all been implicated in the development of sepsis-induced organ failure. This study evaluated the effect on liver mitochondrial function of using norepinephrine to increase blood pressure in experimental sepsis. METHODS: Thirteen anaesthetized pigs received endotoxin (Escherichia coli lipopolysaccharide B0111:B4; 0.4 mug/kg per hour) and were subsequently randomly assigned to norepinephrine treatment or placebo for 10 hours. Norepinephrine dose was adjusted at 2-hour intervals to achieve 15 mmHg increases in mean arterial blood pressure up to 95 mmHg. Systemic (thermodilution) and hepatosplanchnic (ultrasound Doppler) blood flow were measured at each step. At the end of the experiment, hepatic mitochondrial oxygen consumption (high-resolution respirometry) and citrate synthase activity (spectrophotometry) were assessed. RESULTS: Mean arterial pressure (mmHg) increased only in norepinephrine-treated animals (from 73 [median; range 69 to 81] to 63 [60 to 68] in controls [P = 0.09] and from 83 [69 to 93] to 96 [86 to 108] in norepinephrine-treated animals [P = 0.019]). Cardiac index and systemic oxygen delivery (DO2) increased in both groups, but significantly more in the norepinephrine group (P < 0.03 for both). Cardiac index (ml/min per.kg) increased from 99 (range: 72 to 112) to 117 (110 to 232) in controls (P = 0.002), and from 107 (84 to 132) to 161 (147 to 340) in norepinephrine-treated animals (P = 0.001). DO2 (ml/min per.kg) increased from 13 (range: 11 to 15) to 16 (15 to 24) in controls (P = 0.028), and from 16 (12 to 19) to 29 (25 to 52) in norepinephrine-treated animals (P = 0.018). Systemic oxygen consumption (systemic VO2) increased in both groups (P < 0.05), whereas hepatosplanchnic flows, DO2 and VO2 remained stable. The hepatic lactate extraction ratio decreased in both groups (P = 0.05). Liver mitochondria complex I-dependent and II-dependent respiratory control ratios were increased in the norepinephrine group (complex I: 3.5 [range: 2.1 to 5.7] in controls versus 5.8 [4.8 to 6.4] in norepinephrine-treated animals [P = 0.015]; complex II: 3.1 [2.3 to 3.8] in controls versus 3.7 [3.3 to 4.6] in norepinephrine-treated animals [P = 0.09]). No differences were observed in citrate synthase activity. CONCLUSION: Norepinephrine treatment during endotoxaemia does not increase hepatosplanchnic flow, oxygen delivery or consumption, and does not improve the hepatic lactate extraction ratio. However, norepinephrine increases the liver mitochondria complex I-dependent and II-dependent respiratory control ratios. This effect was probably mediated by a direct effect of norepinephrine on liver cells.
Resumo:
This study investigated the uptake, kinetics and cellular distribution of different surface coated quantum dots (QDs) before relating this to their toxicity. J774.A1 cells were treated with organic, COOH and NH2 (PEG) surface coated QDs (40 nM). Model 20 nm and 200 nm COOH-modified coated polystyrene beads (PBs) were also examined (50 microg ml(-1)). The potential for uptake of QDs was examined by both fixed and live cell confocal microscopy as well as by flow cytometry over 2 h. Both the COOH 20 nm and 200 nm PBs were clearly and rapidly taken up by the J774.A1 cells, with uptake of 20 nm PBs being relatively quicker and more extensive. Similarly, COOH QDs were clearly taken up by the macrophages. Uptake of NH2 (PEG) QDs was not detectable by live cell imaging however, was observed following 3D reconstruction of fixed cells, as well as by flow cytometry. Cells treated with organic QDs, monitored by live cell imaging, showed only a small amount of uptake in a relatively small number of cells. This uptake was insufficient to be detected by flow cytometry. Imaging of fixed cells was not possible due to a loss in cell integrity related to cytotoxicity. A significant reduction (p<0.05) in the fluorescent intensity in a cell-free environment was found with organic QDs, NH2 (PEG) QDs, 20 nm and 200 nm PBs at pH 4.0 (indicative of an endosome) after 2 h, suggesting reduced stability. No evidence of exocytosis was found over 2 h. These findings confirm that surface coating has a significant influence on the mode of NP interaction with cells, as well as the subsequent consequences of that interaction.
Resumo:
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a nitramine compound that has been used heavily by the military as an explosive. Manufacturing, use, and disposal of RDX have led to several contamination sites across the United States. RDX is both persistent in the environment and a threat to human health, making its remediation vital. The use of plants to extract RDX from the soil and metabolize it once it is in the plant tissue, is being considered as a possible solution. In the present study, the tropical grass Chrysopogon zizanioides was grown hydroponically in the presence RDX at 3 different concentration levels: 0.3, 1.1, and 2.26 ppm. The uptake of RDX was quantified by high performance liquid chromatography (HPLC) analysis of media samples taken every 6 hr during the first 24 hr and then daily over a 30-day experimental period. A rapid decrease in RDX concentration in the media of both controls and plant treatments was seen within the first 18 hours of the experiment with the greatest loss in RDX over time occurring within the first 6 hours of exposure. The loss was similar in both controls and plant exposures and possibly attributed to rapid uptake by the containers. A plant from one treatment at each of the three concentrations was harvested at Day 10, 20 and 30 throughout the experiment and extracted to determine the localization of RDX within the tissue and potentially identify any metabolites on the basis of differing retention times. Of the treatments containing 0.3, 1.1, and 2.26 ppm RDX, 13.1%, 18.3%, and 24.2% respectively, was quantified in vetiver extracts, with the majority of the RDX being localized to the roots. All plants not yet harvested were harvested on Day 30 of the experiment. A total of three plants exposed to each concentration level as well as the control, were extracted and analyzed with HPLC to determine amount of RDX taken up, localization of RDX within the plant tissue, and potentially identify any metabolites. Phytotoxicity of RDX to vetiver was also monitored. While a loss in biomass was observed in plants exposed to all the different concentrations of RDX, control plants grown in media not exposed to RDX showed the greatest biomass loss of all the treatments. There was also little variation in chlorophyll content between the different concentration treatments with RDX. This preliminary greenhouse study of RDX uptake 10 by Chrysopogon zizanioides will help indicate the potential ability of vetiver to serve as a plant system in the phytoremediation of RDX.
Early season ozone uptake is important for determining ozone tolerance in two trembling aspen clones
Resumo:
There is substantial genetic variability in response to ozone amongst and within tree species. Aspen is a highly variable species with a wide range of responses to ozone. Aspen response to elevated O3 levels is being investigated at the Aspen FACE site near Rhinelander, WI where five aspen clones of varying O3 tolerance have been fumigated with elevated O3 over the past decade. In this study, we examined the physiological differences in two of the aspen clones that differed significantly in their O3 tolerance with 8L being tolerant and 42E being sensitive. Throughout the 2007 and 2008 growing seasons we periodically estimated instantaneous photosynthetic rates, ACi responses and light response curves. The results of our study suggest that aspen clone 8L’s tolerance is due in part to decreased stomatal conductance early in the season, which lowered ozone uptake. Later during the season O3 uptake was comparable for the two clones. Our results also suggest the response of Vcmax, TPU, Rd, Gm, light compensation point and quantum flux to elevated O3 did not differ significantly between the two clones. Ozone uptake is important for ozone tolerance in clone 8L early in the season but cannot explain late season tolerance. Photosynthetic parameters for the two clones were similar, so clone 8L’s ozone tolerance is not due to a more efficient photosynthetic system.
Resumo:
BACKGROUND: Caring for a spouse with Alzheimer's disease is associated with increased psychological distress, impaired immunity, and heightened cardiovascular risk. Hyperreactivity of sympathetic and platelet activation responses to acute psychological stress, or the failure to recover quickly from stressful events, may constitute an important pathway linking stress and negative affect with cardiovascular disease (CVD). OBJECTIVES: (1) To evaluate associations between negative affect (i.e., depressive and anxious symptoms) with increased norepinephrine and P-selectin responses to an acute psychological stress task. (2) To establish whether these associations are augmented among elderly spousal caregivers (CG) compared to non-caregivers (NC). METHODS: Depressive (DEP) and anxious (ANX) symptoms from the Brief Symptom Inventory were assessed among 39 CG and 31 NC. Plasma norepinephrine levels (NE) and percent platelet P-selectin (PSEL) expression were assayed at three time-points: rest, immediately following a laboratory speech test (reactivity), and after 14 min of recovery. Results: Among CG, but not NC, increased symptoms of depression and anxiety were associated with delayed NE recovery (DEP: beta=.460, p=.008; ANX: beta=.361, p=.034), increased PSEL reactivity (DEP: beta=.703, p<.001; ANX: beta=.526, p=.002), and delayed PSEL recovery (DEP: beta=.372, p=.039; ANX: beta=.295, p=.092), while controlling for age, gender, aspirin use, antidepressant use, and preexisting CVD. Bivariate correlations showed delayed NE recovery was also associated with increased PSEL reactivity (r=.416) and delayed PSEL recovery (r=.372; all ps<.05) among CG but not NC. DISCUSSION: Among chronically stressed caregivers, increased levels of depressive and anxious symptoms are associated with prolonged sympathetic activation and pronounced platelet activation. These changes may represent one pathway linking caregiving stress to cardiovascular risk.
Resumo:
BACKGROUND: Vasopressor-induced hypertension is routinely indicated for prevention and treatment of cerebral vasospasm (CVS) after subarachnoid haemorrhage (SAH). Mechanisms underlying patients' clinical improvement during vasopressor-induced hypertension remain incompletely understood. The aim of this study was to evaluate angiographic effects of normovolaemic Norepinephrine (NE)-induced hypertension therapy on the rabbit basilar artery (BA) after SAH. METHODS: Cerebral vasospasm was induced using the one-haemorrhage rabbit model; sham-operated animals served as controls. Five days later the animals underwent follow-up angiography prior to and during NE-induced hypertension. Changes in diameter of the BA were digitally calculated in mean microm +/- SEM (standard error of mean). FINDINGS: Significant CVS of 14.2% was documented in the BA of the SAH animals on day 5 compared to the baseline angiogram on day 0 (n = 12, p < 0.01), whereas the BA of the control animals remained statistically unchanged (n = 12, p > 0.05). During systemic administration of NE, mean arterial pressure increased from 70.0 +/- 1.9 mmHg to 136.0 +/- 2.1 mmHg in the SAH group (n = 12, p < 0.001) and from 72.0 +/- 3.1 to 137.8 +/- 1.3 in the control group (n = 12, p < 0.001). On day 5 after SAH, a significant dilatation of the BA in response to norepinephrine could be demonstrated in both groups. The diameter of the BA in the SAH group increased from 640.5 +/- 17.5 microm to 722.5 +/- 23.7 microm (n = 12, p < 0.05; ). In the control group the diameter increased from 716.8 +/- 15.5 microm to 779.9 +/- 24.1 microm (n = 12, p < 0.05). CONCLUSION: This study demonstrated that NE-induced hypertension causes angiographic dilatation of the BA in the SAH rabbit model. Based on these observations, it can be hypothesised that clinical improvement during vasopressor-induced hypertension therapy after SAH might be explained with cerebral vasodilatation mechanisms that lead to improvement of cerebral blood flow.
Resumo:
A 70-year-old man known for recurrent abdominal gastrointestinal stroma tumor presented with a suspicious peritoneal mass demonstrated by an abdominal CT scan. Whole-body PET showed focal FDG uptake in the right hip, whereas the peritoneal mass was FDG negative. Histologic work-up of the PET positive lesion surprisingly revealed a giant cell tumor of the tendon sheath. The benignity of the peritoneal mass was confirmed by its disappearance in repeated CT scans. In general, focally increased FDG uptake should be subject to further investigations, especially in localizations that are not consistent with typical metastatic pathways of the former primary tumor.
Resumo:
Dendritic cells (DCs) can release hundreds of membrane vesicles, called exovesicles, which are able to activate resting DCs and distribute antigen. Here, we examined the role of mature DC-derived exovesicles in innate and adaptive immunity, in particular their capacity to activate epithelial cells. Our analysis of exovesicle contents showed that exovesicles contain major histocompatibility complex-II, CD40, and CD83 molecules in addition to tumor necrosis factor (TNF) receptors, TNFRI and TNFRII, and are important carriers of TNF-alpha. These exovesicles are rapidly internalized by epithelial cells, inducing the release of cytokines and chemokines, but do not transfer an alloantigen-presenting capacity to epithelial cells. Part of this activation appears to involve the TNF-alpha-mediated pathway, highlighting the key role of DC-derived exovesicles, not only in adaptive immunity, but also in innate immunity by triggering innate immune responses and activating neighboring epithelial cells to release cytokines and chemokines, thereby amplifying the magnitude of the innate immune response.
Resumo:
Tin-containing fluoride solutions can reduce erosive tissue loss, but the effects of the reaction between tin and enamel are still not clear. During a 10-d period, enamel specimens were cyclically demineralized (0.05 M citric acid, pH 2.3, 6 x 5 min d(-1)) and remineralized (between the demineralization cycles and overnight). In the negative-control group, no further treatment was performed. Three groups were treated (2 x 2 min d(-1)) with tin-containing fluoride solutions (400, 1,400 or 2,100 ppm Sn2+, all 1,500 ppm F-, pH 4.5). Three additional groups were treated with test solutions twice daily, but without demineralization. Tissue loss was determined profilometrically. Energy-dispersive X-ray spectroscopy was used to measure the tin content on and within three layers (10 mum each) beneath the surface. In addition, scanning electron microscopy was conducted. All test preparations significantly reduced tissue loss. Deposition of tin on surfaces was higher without erosion than with erosion, but no incorporation of tin into enamel was found without demineralization. Under erosive conditions, both highly concentrated solutions led to the incorporation of tin up to a depth of 20 mum; the less-concentrated solution led to small amounts of tin in the outer 10 mum. The efficacy of tin-containing solutions seems to depend mainly on the incorporation of tin into enamel.
Resumo:
In general, vascular contributions to the in vivo magnetic resonance (MR) brain spectrum are too small to be relevant. In cerebral uptake studies, however, vascular contributions may constitute a major confounder. MR visibility of vascular Phe was investigated by recording localized spectra from fully oxygenated and well-mixed whole blood. Blood Phe levels determined by MR spectroscopy (MRS) and ion-exchange chromatography showed excellent correlation. In addition, effects of blood flow were shown to have a small effect on signal amplitude with the MRS methodology used. Hence, blood Phe is almost completely MR visible at 1.5 T, even though it is severely broadened at higher fields. Without appropriate correction, cerebral Phe influx in studies of brain Phe uptake in phenylketonuria patients or healthy subjects would appear to be faster and lead to higher levels. Similar effects are envisaged for studies of ethanol or glucose uptake across the blood-brain barrier.
Resumo:
OBJECTIVES: The aim of the study was to investigate the influence of continued injecting drug use, enrolment in an opiate substitution treatment programme (OSTP), or cessation of injecting drug use on the uptake and course of antiretroviral therapy (ART). Design A prospective observational study of all participants in the Swiss HIV Cohort Study followed between 1997 and 2006 was carried out. METHODS: We distinguished four groups of former or current injecting drug users (IDUs): (i) abstinent former IDUs; (ii) persons in OSTPs without concomitant injecting drug use; (iii) persons in OSTPs with concomitant injecting drug use; (vi) current IDUs. These groups were compared with a group of patients who had never been IDUs. Factors related to ART uptake and virological endpoints were analysed using logistic generalized estimating equations. RESULTS: We followed 8660 participants for 48 477 person-years; 29.7% were in the IDU HIV transmission group. The likelihood of being on ART at biannual visits was lower among individuals in OSTPs with concomitant injecting drug use [odds ratio (OR) 0.79; 95% confidence interval (CI) 0.71-0.89] and current IDUs (OR 0.80; 95% CI 0.67-0.96), compared with those who had never been IDUs (reference), abstinent former IDUs (OR 1.13; 95% CI 1.02-1.25) and individuals in OSTPs without injecting drug use (OR 1.18; 95% CI 1.06-1.31). The likelihood of suppressed viral replication on ART was similar among those who had never been IDUs, abstinent former IDUs and individuals in an OSTP without injecting drug use, and lower among those in OSTPs with concomitant drug use (OR 0.82; 95% CI 0.72-0.93) and current IDUs (OR 0.81; 0.65-1.00). Adherence to ART was decreased among persons with continued injecting drug use, and correlated with virological outcome. CONCLUSIONS: Uptake of and virological response to ART were improved among abstinent former IDUs and persons in OSTPs without concomitant injecting drug use, compared with persons with continued injecting drug use.