858 resultados para nonlinear waves propagation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel technique for selecting the poles of orthonormal basis functions (OBF) in Volterra models of any order is presented. It is well-known that the usual large number of parameters required to describe the Volterra kernels can be significantly reduced by representing each kernel using an appropriate basis of orthonormal functions. Such a representation results in the so-called OBF Volterra model, which has a Wiener structure consisting of a linear dynamic generated by the orthonormal basis followed by a nonlinear static mapping given by the Volterra polynomial series. Aiming at optimizing the poles that fully parameterize the orthonormal bases, the exact gradients of the outputs of the orthonormal filters with respect to their poles are computed analytically by using a back-propagation-through-time technique. The expressions relative to the Kautz basis and to generalized orthonormal bases of functions (GOBF) are addressed; the ones related to the Laguerre basis follow straightforwardly as a particular case. The main innovation here is that the dynamic nature of the OBF filters is fully considered in the gradient computations. These gradients provide exact search directions for optimizing the poles of a given orthonormal basis. Such search directions can, in turn, be used as part of an optimization procedure to locate the minimum of a cost-function that takes into account the error of estimation of the system output. The Levenberg-Marquardt algorithm is adopted here as the optimization procedure. Unlike previous related work, the proposed approach relies solely on input-output data measured from the system to be modeled, i.e., no information about the Volterra kernels is required. Examples are presented to illustrate the application of this approach to the modeling of dynamic systems, including a real magnetic levitation system with nonlinear oscillatory behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Assuming that nuclear matter can be treated as a perfect fluid, we study the propagation of perturbations in the baryon density. The equation of state is derived from a relativistic mean field model, which is a variant of the non-linear Walecka model. The expansion of the Euler and continuity equations of relativistic hydrodynamics around equilibrium configurations leads to differential equations for the density perturbation. We solve them numerically for linear and spherical perturbations and follow the propagation of the initial pulses. For linear perturbations we find single soliton solutions and solutions with one or more solitons followed by ""radiation"". Depending on the equation of state a strong damping may occur. We consider also the evolution of perturbations in a medium without dispersive effects. In this case we observe the formation and breaking of shock waves. We study all these equations also for matter at finite temperature. Our results may be relevant for the analysis of RHIC data. They suggest that the shock waves formed in the quark gluon plasma phase may survive and propagate in the hadronic phase. (C) 2009 Elseiver. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Z-scan technique is employed to obtain the nonlinear refractive index (n (2)) of the Ca(4)REO(BO(3))(3) (RECOB, where RE = Gd and La) single crystals using 30 fs laser pulses centered at 780 nm for the two orthogonal orientations determined by the optical axes (X and Z) relative to the direction of propagation of the laser beam (k//Y// crystallographic b-axis). The large values of n (2) indicate that both GdCOB and LaCOB are potential hosts for Yb:RECOB lasers operating in the Kerr-lens mode locking (KLM) regime.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The propagation of an optical beam through dielectric media induces changes in the refractive index, An, which causes self-focusing or self-defocusing. In the particular case of ion-doped solids, there are thermal and non-thermal lens effects, where the latter is due to the polarizability difference, Delta alpha, between the excited and ground states, the so-called population lens (PL) effect. PL is a pure electronic contribution to the nonlinearity, while the thermal lens (TL) effect is caused by the conversion of part of the absorbed energy into heat. In time-resolved measurements such as Z-scan and TL transient experiments, it is not easy to separate these two contributions to nonlinear refractive index because they usually have similar response times. In this work, we performed time-resolved measurements using both Z-scan and mode mismatched TL in order to discriminate thermal and electronic contributions to the laser-induced refractive index change of the Nd3+-doped Strontium Barium Niobate (SrxBa1-xNb2O6) laser crystal. Combining numerical simulations with experimental results we could successfully distinguish between the two contributions to An. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article is dedicated to harmonic wavelet Galerkin methods for the solution of partial differential equations. Several variants of the method are proposed and analyzed, using the Burgers equation as a test model. The computational complexity can be reduced when the localization properties of the wavelets and restricted interactions between different scales are exploited. The resulting variants of the method have computational complexities ranging from O(N(3)) to O(N) (N being the space dimension) per time step. A pseudo-spectral wavelet scheme is also described and compared to the methods based on connection coefficients. The harmonic wavelet Galerkin scheme is applied to a nonlinear model for the propagation of precipitation fronts, with the front locations being exposed in the sizes of the localized wavelet coefficients. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is concerned with the existence and nonlinear stability of periodic travelling-wave solutions for a nonlinear Schrodinger-type system arising in nonlinear optics. We show the existence of smooth curves of periodic solutions depending on the dnoidal-type functions. We prove stability results by perturbations having the same minimal wavelength, and instability behaviour by perturbations of two or more times the minima period. We also establish global well posedness for our system by using Bourgain`s approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work the adiabatic approximation is applied to the propagation of matter waves in confined geometries like those experimentally realized in recent atom optical experiments. Adiabatic propagation along a channel is assumed not to mix the various transverse modes. Nonadiabatic corrections arise from the potential squeezing and bending. Here we investigate the effect of the former. Detailed calculations of two-dimensional propagation are carried out both exactly and in an adiabatic approximation. This offers the possibility to analyze the validity of adiabaticity criteria. A semiclassical (sc) approach, based on the sc Massey parameter is shown to be inadequate, and the diffraction due to wave effects must be included separately. This brings in the Fresnel parameter well known from optical systems. Using these two parameters, we have an adequate understanding of adiabaticity on the system analyzed. Thus quantum adiabaticity must also take cognizance of the intrinsic diffraction of matter waves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present an analysis of how matter waves, guided as propagating modes in potential structures, are split under adiabatic conditions. The description is formulated in terms of localized states obtained through a unitary transformation acting on the mode functions. The mathematical framework results in coupled propagation equations that are decoupled in the asymptotic regions as well before as after the split. The resulting states have the advantage of describing propagation in situations, for instance matter-wave interferometers, where local perturbations make the transverse modes of the guiding potential unsuitable as a basis. The different regimes of validity of adiabatic propagation schemes based on localized versus delocalized basis states are also outlined. Nontrivial dynamics for superposition states propagating through split potential structures is investigated through numerical simulations. For superposition states the influence of longitudinal wave-packet extension on the localization is investigated and shown to be accurately described in quantitative terms using the adiabatic formulations presented here.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultracold gases in ring geometries hold promise for significant improvements of gyroscopic sensitivity. Recent experiments have realized atomic and molecular storage rings with radii in the centimeter range, sizes whose practical use in inertial sensors requires velocities significantly in excess of typical recoil velocities. We use a combination of analytical and numerical techniques to study the coherent acceleration of matter waves in circular waveguides, with particular emphasis on its impact on single-mode propagation. In the simplest case we find that single-mode propagation is best maintained by the application of time-dependent acceleration force with the temporal profile of a Blackmann pulse. We also assess the impact of classical noise on the acceleration process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider formation of dissipationless shock waves in Bose-Einstein condensates with repulsive interaction between atoms. It is shown that for big enough initial inhomogeneity of density, interplay of nonlinear and dispersion effects leads to wave breaking phenomenon followed by generation of a train of dark solitons. Analytical theory is confirmed by numerical simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the limit of small values of the aspect ratio parameter (or wave steepness) which measures the amplitude of a surface wave in units of its wave-length, a model equation is derived from the Euler system in infinite depth (deep water) without potential flow assumption. The resulting equation is shown to sustain periodic waves which on the one side tend to the proper linear limit at small amplitudes, on the other side possess a threshold amplitude where wave crest peaking is achieved. An explicit expression of the crest angle at wave breaking is found in terms of the wave velocity. By numerical simulations, stable soliton-like solutions (experiencing elastic interactions) propagate in a given velocities range on the edge of which they tend to the peakon solution. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we discuss the nonlinear propagation of waves of short wavelength in dispersive systems. We propose a family of equations that is likely to describe the asymptotic behaviour of a large class of systems. We then restrict our attention to the analysis of the simplest nonlinear short-wave dynamics given by U-0 xi tau, = U-0 - 3(U-0)(2). We integrate numerically this equation for periodic and non-periodic boundary conditions, and we find that short waves may exist only if the amplitude of the initial profile is not too large.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The theory of optical dispersive shocks generated in the propagation of light beams through photorefractive media is developed. A full one-dimensional analytical theory based on the Whitham modulation approach is given for the simplest case of a sharp steplike initial discontinuity in a beam with one-dimensional striplike geometry. This approach is confirmed by numerical simulations, which are extended also to beams with cylindrical symmetry. The theory explains recent experiments where such dispersive shock waves have been observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We derive the soliton matrices corresponding to an arbitrary number of higher-order normal zeros for the matrix Riemann-Hilbert problem of arbitrary matrix dimension, thus giving the complete solution to the problem of higher-order solitons. Our soliton matrices explicitly give all higher-order multisoliton solutions to the nonlinear partial differential equations integrable through the matrix Riemann-Hilbert problem. We have applied these general results to the three-wave interaction system, and derived new classes of higher-order soliton and two-soliton solutions, in complement to those from our previous publication [Stud. Appl. Math. 110, 297 (2003)], where only the elementary higher-order zeros were considered. The higher-order solitons corresponding to nonelementary zeros generically describe the simultaneous breakup of a pumping wave (u(3)) into the other two components (u(1) and u(2)) and merger of u(1) and u(2) waves into the pumping u(3) wave. The two-soliton solutions corresponding to two simple zeros generically describe the breakup of the pumping u(3) wave into the u(1) and u(2) components, and the reverse process. In the nongeneric cases, these two-soliton solutions could describe the elastic interaction of the u(1) and u(2) waves, thus reproducing previous results obtained by Zakharov and Manakov [Zh. Eksp. Teor. Fiz. 69, 1654 (1975)] and Kaup [Stud. Appl. Math. 55, 9 (1976)]. (C) 2003 American Institute of Physics.